
SIGNAL RECONSTRUCTION IN THE PRESENCE OF SIDE 

INFORMATION: THE IMPACT OF PROJECTION KERNEL DESIGN
Meng-Yang Chen, Francesco Renna, and Miguel R.D Rodrigues

Department of Electronic and Electrical Engineering, University College London, U.K.

{ meng-yang.chen.14, f.renna, m.rodrigues} @ucl.ac.uk

Introduction

ID #2285

Model

Analysis

Numerical Results

Conclusions

• Synthetic Data

• Real Data

(a) Random kernel, side 

information at decoder

(b) Designed kernel, side 

information at decoder

(c) Designed kernel, side 

information at encoder 

and decoder

PSNR = 30.7 dB PSNR = 36.3 dB PSNR = 36.1 dB

• Research Background • Research Question

• Compressive Sensing Model with Side Information

• Reference

We will be assuming that x1 and x2 are drawn from a joint GMM, characterized 

by underlying class labels C1 ∈ {1,…, K1} and C2 ∈ {1,…, K2}, obey the joint 

probability density function (pdf):

• Side information is available at both encoder and decoder

What is the impact of projection

kernel design on the reconstruction

performance of CS of GMM signals

with side information?

p(x1,x2 | C1=i,C2=k) ~ N(μx
(i,k), Σx

(i,k)),

x1 ∈ Rn1

x2 ∈ Rn2

y1 ∈ Rm1

Φ1∈ Rm1×n1

Setup:

n1= 10, n2= 6, K1= K2= 

2, all the means are zero 

where μx
(i,k) = 0, the 

covariance matrices are 

randomly generated 

such that rx
(i,k) = 5, rx1

(i,k)

= 3, rx2
(i,k) = 3, for i = 

1,2 and k = 1,2.

• Compressive sensing (CS) [1],[2].

• CS with Gaussian mixture model 

(GMM) [3].

• CS with side information [4].
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i) Side information is available at decoder only

• Necessary and Sufficient Conditions for Reliable

Reconstruction

ii) Side information is available at both encoder and decoder
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• Side information is available at decoder only
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We consider signal of interest x1 is 512*512 image “Lena” and side 

information x2 is 128*128 image of  the same image. A 20-classes joint GMM 

distribution describing x1 and x2 is trained via EM algorithm. Below figures 

report reconstruction results with m1 = 15 from each patch and with noise level 

σ2= - 60 dB. In particular, result (c) is produced by using suboptimal design 

measurement.

• Sharp necessary and sufficient conditions for reliable reconstruction.

• Conditions for reliable reconstruction with designed projection kernels are the same as those for random projection kernels.

• Projection design guarantees significant reconstruction error reduction at finite noise levels.

• Side information at both encoder and decoder does not reduce significantly the reconstruction error with respect to side information at the decoder only.

Projection Kernel Design
• Performance metric: MMSE

MMSE(σ2,Φ1) = E[|| x1-x1 (y1,x2) ||
2]^

Φ1* =  minimize MMSE(σ2,Φ1) 
Φ1

subject to tr(Φ1Φ1
T)≦m1

MMSE    (σ2) = MMSE(σ2, Φ1*) 
opt

d 

MMSE(σ2,Φ1,x2) = E[|| x1-x1 (y1,x2) ||
2 | x2]

^

Φ1*(x2) =  minimize MMSE(σ2,Φ1,x2) 
Φ1

subject to tr(Φ1Φ1
T)≦m1

MMSE    (σ2) 

= E[MMSE(σ2, Φ1*(x2), x2)] 

opt

ed 
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• Note that suboptimal design of

measurement Φ1* is obtained by

considering classification of x2 (at

both decoder and encoder) we

denote MMSE (σ2).

as suboptimal case.

subopt

ed 

• Conditions for reliable reconstruction with designed projection kernels are the 

same as those for random kernels, as provided in [3], [4].

C2

Estimator

Encoder Decoder

w1 ~N(0, I‧σ2)

C1 Φ1

x1

x2x2
x2

y1 = Φ1x1+ w1
signal of interest

side information

Measurement Matrix Optimization

Φ1 = Φ1*

E[x1|y1,x2] can be also

expressed in closed form

[3],[4].

x̂1 =

x̂1

μx
(i,k) =

μx1
(i,k)

μx2
(i,k)

[ ]where mean Σx
(i,k) = [ ].Σx1  

(i,k) Σx12
(i,k)

Σx21
(i,k) Σx2  

(i,k)
, and the covariance matrix

The covariance matrices are assumed to be possibly low-rank, and we denote 

such ranks by rx
(i,k) = rank(Σx

(i,k) ), rx1
(i,k) = rank(Σx1

(i,k) ) and rx2
(i,k) = rank(Σx2

(i,k) ).


