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What Are Hot Spots?

(o
Hot spots are parts in conversations that stand out from the rest of the conversation in that:

o Participants are more involved (emotionally or ‘interactively’)

o
o There is a higher degree of interaction between participants who are trying to get the floor

-- Wrede et al. [2005/ICSI Technical Report]




Why Are Hot Spots Useful?

o Improve summarization

o Support meeting analytics

o Increase human productivity
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|CSI Corpus - Overview

o 75 meetings

o 72 hours

o Average of 6 speakers / meeting

o Janin et al. [2003/ICASSP]




|CSI Corpus - Annotations

Hot spot annotations:
o 3 levels: lukewarm, warm, hot

o 3 degrees: -, 0, +
o Type: Amusement, Clarification, Disagreement, Agreement, etc.
o Labels are at the utterance level, based on linguistic segmentations

Other annotations:
° Dialog Acts
o Adjacency Pairs
o Error Codes
° Etc.

Time marks for transcribed words, with speaker labels.
o Determined by forced alignment of human transcripts on close-talking microphones




Defining a Machine Learning Task

The problem:
o Unbalanced dataset: ~¥1% were hot spots

> Annotations were too granular

Solution:
o Turn this into a binary classification problem (hot or not)
o Use uniform intervals as units

Why do we like UAR?
> UAR = unweighted average recall

o Equal to accuracy with same aggregate weight given to all
classes (regardless of corpus frequency)

o Metric does not depend on class prior distribution




Metrics for Classification

TP+TN | relevant elements |
TP+TN+FP+FN

o ACC — Accuracy:

o UAR — Unweighted Average Recall

o Same as ACC, but after rebalancing frequency

o Baseline for UAR: 0.5 (chance performance)
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Kornel Laskowski [2008/SLT]

Key aspects:
JELING VOCAL INTERACTION FOR TEXT-INDEPENDENT

o Detect whether a 60 second interval contains involved )N OF INVOLVEMENT HOTSPOTS IN MULTI-PARTY MEETING!
speech, with a 15 second shift Kornel Laskowski

° Laughter is most important feature goitive Sesteme Lab, Untverest Kealorahe, Konloodhe, Gomeatty ™
> Only other features used: speech activity (by speaker)

ABSTRACT degree of interaction by participants who are trying to g

By the numbers:

> 84.0% accuracy (not UAR) with laughter related features
o Laughter is a cheating feature

Train/dev/eval split — 75 total:

° 49/11/15
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Revised Task Definition

Our adjustment:
o |f utterance == hot, 60 sec window = hot

BEFORE AFTER

Different from Laskwoski:
o 15649 intervals vs. 15823 \/
° 26.6% involved vs. 21.7% involved

M Hot " Hot

Improvement:
o ~22X more of minority set
MHot  “Hot




Window Visualization
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Window Visualization
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. . . 1
Experiments with Speech Activity and L

Interaction Features

Features extracted:
o Speaker overlap percentages

o Unique speaker count
o Turn switch count

Models used:
o Logistic regression (class-balanced weight)
° Random Forests
o Multinomial Naive Bayes (Multinomial NB)
° Linear Support Vector Machine (Linear SVM)




Speech Activity Features: Results
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Laughter is great, but ...

Laughter Count
o Further research required for automatic detection

o Depends on social environment
o Network would learn to rely on laughter




Word Embeddings

Extracted from BERT model

Smaller, better representation:
01024 dimensions
o Proximity between embeddings = semantic & linguistic similarity

Adapted vs. unadapted

o Adapted on spoken call center corpus - used for sentiment classification
o Adapted performs slightly better than unadapted

The embedding vectors are pooled over the entire window, zero-centered, and
then classified




Prosodic Features

Prosody denotes the supra-segmental (above the phone level) aspects of speech
that are encoded by pitch, energy, and duration

Why would they help?
o Prosody conveys emphasis, sentiment, and emotion
o Expect higher involvement to be correlated with increased sentiment, emphasis, and emotion




OpenSMILE

Standard toolkit for emotion extraction from speech
o Uses acoustic features

Config file used: emobase -
o Helpful for emotion, sentiment detection O pe n S M I LE -)

- 988 features by audEERING™

2 choices of feature extraction windows
o Entire 60 second window
> 5 second sub-windows, pooled over the 60 second window

o OpenSmile features are designed to operate on single utterances
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Neural Network for OpenSmile Feature ®
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Representation of Prosodic Features
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Overall Classifier Architecture
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Classification Results by Feature Type

UAR with Features UAR without Features

Prosody (OpenSMILE) 62.0% 71.7%
Speech activity 68.0% 72.2%
Words (BERT) 70.5% 68.4%
All 72.6% N/A




Results with Feature Type Combinations

UAR vs Feature Combinations
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Hot Spot Detection: Conclusions

o A combination of word-based, prosodic, and interaction features can predict high involvement
(or “hotness”) in 60-sec windows with about 73% UAR (where chance is 50%)

o Word-based features using BERT embeddings are the single most important speech-based
source of information

o Prosody, while not as strong by itself, is the next most informative speech feature (in
combination with words)

o Interaction features (which are based only on speech activity) are informative by themselves
(as observed by Laskowski), but do not add much information once words and prosody are given

o Laughter is a very strong indicator of involvement by itself in the ICSI corpus (75% UAR), but we
don’t trust that it can be extracted reliably or that it will generalize across different types of
meetings.




Future Work

o Validation on other meeting corpora

o Feature extraction with automatic speech recognition

o Feature fusion by NN as opposed to Logistic Regression

o Demonstrate utility of hot spot detection in an actual meeting summarization
system
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