TASK-AWARE MEAN TEACHER METHOD FOR LARGE SCALE WEAKLY LABELED SEMI-SUPERVISED SOUND EVENT DETECTION

Jie Yan¹ Yan Song¹ Li-Rong Dai¹ Ian McLoughlin² ¹ National Engineering Laboratory for Speech and Language Information Processing, University of Science and Technology of China, Hefei, China. ² School of Computing, University of Kent, Medway, UK.

Contents

- Motivation
- Our Approach
- Proposed System
- Experiments and Results
- Conclusion

Background

- Sound event detection (SED) : determine both the category and occurrence time of a sound event
- Audio tagging (AT) : only needs to predict the category
- Mean teacher (A semi-supervised learning method):
 - It is composed of two networks that both have the same structure.
 - One network is a student model which is trained by back propagation.
 - The other is a teacher model which is updated, much more slowly, by the exponential moving average of the student parameters.

Motivation

- The performance of NN based SED methods depends heavily on the size and quality of the training dataset.
 - Datasets with strong labels are expensive and time-consuming to collect.
 - By contrast, unlabeled or weakly labeled SED recordings are far more easily available.
- SED needs fine-level information, whereas AT tends to provide coarse-level information.
 - Systems for SED are often designed to perform both SED and AT simultaneously.
 - This scale mismatch indicates that systems jointly optimised to perform both tasks may be disadvantaged.

Our Approach

- Mean teacher learning method with data augmentation is used to exploit unlabeled data in an effective way to learn additional structure from the input distribution.
- Multi-branch CRNN structure is proposed to solve the SED and AT tasks differently
 - Specifically, a branch with coarse temporal resolution is designed for the AT task, while a branch with a finer level of temporal resolution is designed for the SED task.

Our Approach

Data Augmentation

- Data augmentation is often used to generate the perturbation of training data to improve the generalization capability of the model.
 - Spec-augment is first applied to the feature inputs.
 - In our implementation, only frequency masking is applied, which means that entire mel frequency bands are consecutively masked.

Our Approach Data Augmentation

- A method of mixing up labeled and unlabeled data is proposed for the system.
 - Given data x_i , x_j , the mixture method is implemented as below;

$$\hat{x}_{mix} = \lambda * x_i + (1 - \lambda)x_j$$
$$\hat{y}_{mix} = \lambda * \hat{y}_i + (1 - \lambda)\hat{y}_j$$
$$\hat{y} = \begin{cases} y & (x, y) \in D_L \\ f_{\theta'}(x) & (x) \in D_{UL} \end{cases}$$

where y is the label of data x and $f_{\theta'}$ is the teacher model. D_L and D_{UL} are the labeled and unlabeled dataset respectively.

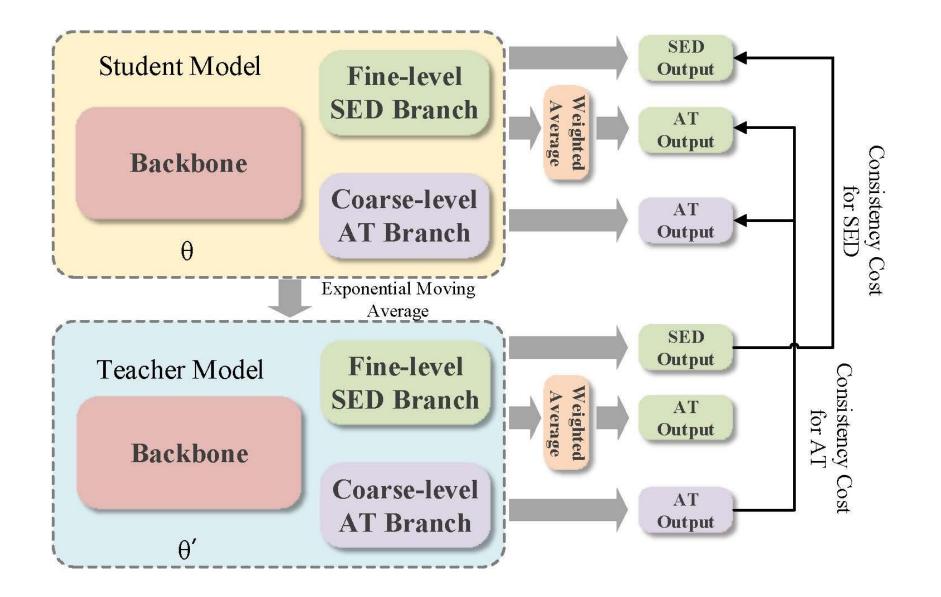
Our Approach

Task-aware Teacher-student Learning

- We designed the proposed system to incorporate two branches with the same backbone but dedicated to fine-level and coarse-level information respectively.
- Prediction of the coarse-level AT branch in the teacher model is used to teach the AT ability of the student model, while prediction of the fine-level SED branch in the teacher model is used to teach the SED ability of student model.
 - Given data x, the consistency loss is organized as below;

$$L_{consistency} = \sum_{n=1}^{N} L_{AT}(S_{\theta_{F_{at}}}(x_{n}), T_{\theta_{C_{at}}}(x_{n})) + L_{SED}(S_{\theta_{F_{as}}}(x_{n}), T_{\theta_{F_{as}}}(x_{n})) + L_{AT_{aux}}(S_{\theta_{C_{at}}}(x_{n}), T_{\theta_{C_{at}}}(x_{n}))$$

• where S_{θ} and $T_{\theta'}$ are student model and teacher model. F_SED , F_AT and C_AT are the fine-level SED output, fine-level AT output and coarse-level AT output respectively



Task-aware teacher-student learning method

Proposed System

- The architecture used for our experiments is a CRNN structure.
- Context Gating
 - The context gating (CG) module in the CNN block is applied for learning of gated units.
 - Given the input feature *X*, an output *Y* the CG module can be represented as

$Y = \sigma(W * X + b) \cdot X$

where * denotes the convolutional operator, *W* and *b* are filter kernel and bias. σ is the sigmoid function and \cdot is the element-wise product.

Proposed System

Multi-branch Structure

- The network has a shared backbone, followed by two branches with fine- and coarse-level information respectively.
- In each branch, the pooling module following the convolution operator is applied to control the receptive field of the feature representation.

Multi-resolution Feature

- Features with a variety of receptive field sizes can be suitable for SED.
- In our system, we aggregate the last few layer outputs of the CNN part to obtain multi-resolution features.

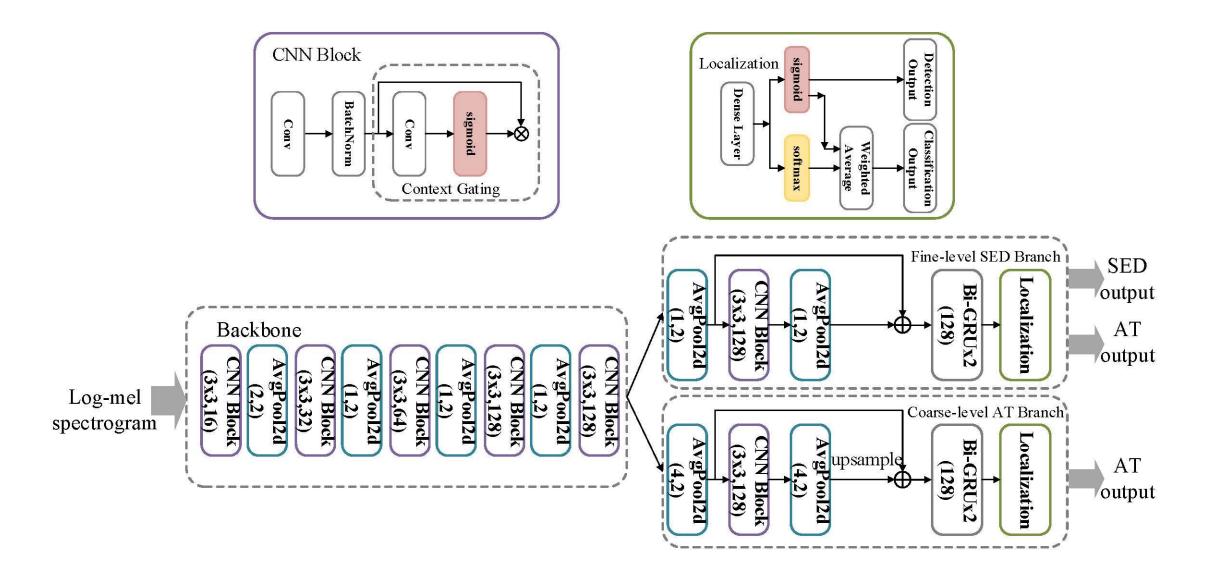


Illustration of the proposed model architecture

Experiments and Results

- Dataset
- The dataset is from Task 4 of the DCASE 2018 Challenge
 - 1,578 weakly labeled training clips
 - 14,412 unlabeled in-domain training clips
 - 39,999 unlabeled out-of-domain training clips
 - 288 development clips
 - 880 evaluation clips
- The dataset has 10 classes of sound events selected from domestic environments.
 Event label
 Count
 Length (s) Total
 Average

Sound event class durations occurring in the development dataset.

Event label	Count	Length (s)	
		Total	Average
Alarm_bell_ringing	112	171.87	1.53
Blender	40	214.19	5.35
Cat	97	78.90	0.81
Dishes	122	68.27	0.56
Dog	127	130.33	1.03
Electric_shaver_toothbrush	28	207.63	7.42
Frying	24	224.07	9.34
Running_water	76	426.44	5.61
Speech	261	395.41	1.51
Vacuum_cleaner	36	311.60	8.66

Model	F1	Model	Event-based F1
CRNN-ML	71.8	CRNN-MULT	30.6
CRNN-MULS	72.4	CRNN-MULT-MF-F	33.6
CRNN-MULT	72.6	CRNN-MULT-MF-C	32.7
CRNN-MULT-MF-F	73.6	CRNN-MULT-MF-CF	35.5
CRNN-MULT-MF-C	73.9	CRNN-MULT-MF-final	37.7

Audio tagging (AT) results for the proposed methods.

Sound event detection (SED) results for the proposed methods.

- "-ML", "-MULS" and "-MULT" mean mixing up labeled data only, mixing up unlabeled and labeled data separately, and mixing up unlabeled and labeled data together.
- "-MF" refers to a system using the concatenation operation to obtain multi-resolution features.
- "-F" and "-C" refer to systems with only a fine-level branch or a coarse-level branch respectively.

Analysis

- Data augmentation for unlabeled data improves the performance of AT.
- The usage of multiresolution features is found to be beneficial for both SED and AT.
- Compared to the system with fine-level information, the system with coarse-level information has better AT performance and worse SED performance.
- It is evident that the systems with two branches for SED and AT respectively outperform systems having just one.

Conclusion

- This paper proposed a method to mitigate the problem of making predictions for SED and AT through the same network structure when using unlabeled data.
- A multi-branch system was designed to enable detection using fine-level information, and classification using coarse-level information.
- Data augmentation was applied for unlabeled data and multi-resolution features in order to improve system performance.

Thank you!

