Design of a Convergence-aware Based Expectation Propagation Algorithm for Uplink MIMO SCMA Systems

Jih-Yang Lin and Pei-Yun Tsai Department of Electrical Engineering, National Central University, Taiwan ICASSP 2020

NCU DigitalSystemResearchLab

Outline

Introduction

- System model of SCMA
- Proposed convergence-aware based EPA
- Simulation result and comparison
- Conclusion
- Reference

Introduction

- IoT applications in 5G system require massive connections and low latency for wireless communications.
- Non-orthogonal multiple access, or so called NOMA technique, has been proposed as a promising technology to meet the requirement.
- Sparse code multiple access (SCMA) is one of the famous NOMA techniques. Developed detection schemes include
 - Message passing algorithm (MPA)
 - Expectation propagation algorithm (EPA)

System Model of SCMA

SCMA

System Model of SCMA

SCMA

System Model of SCMA

Uplink system model:

•
$$\mathbf{y}^{(n)} = \sum_{j=1}^{J} diag(\mathbf{h}_{j}^{(n)}) \mathbf{x}_{j} + \mathbf{v}^{(n)}$$

• $\mathbf{y}^{(n)} = \begin{bmatrix} y_{1}^{(n)} \dots y_{K}^{(n)} \end{bmatrix}^{T}$
• $\mathbf{h}_{j}^{(n)} = \begin{bmatrix} h_{j,1}^{(n)} \dots h_{j,K}^{(n)} \end{bmatrix}^{T}$
• $\mathbf{x}_{j} = \begin{bmatrix} x_{j,1} \dots x_{j,K} \end{bmatrix}^{T}$
• $\mathbf{v}^{(n)} = \begin{bmatrix} v_{1}^{(n)} \dots v_{K}^{(n)} \end{bmatrix}^{T}$

- j : user index
- n: antenna index
- k: resource index

Factor graph

$$f_{k}^{(n)} = P\left(y_{k}^{(n)} | \mathbf{x}\right) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{2\sigma^{2}}{2\sigma^{2}}}$$

$$SNR = \frac{E\{|y_{k}^{(n)}|^{2}\}}{\sigma^{2}}$$

Conventional EPA

Conventional algorithm

Algorithm : EPA [8] // Initialization $\mu_{(k,n) \to j}^{(0)} = 0, \xi_{(k,n) \to j}^{(0)} = \infty, \mu_{j,k}^{(0)} = 0, \xi_{j,k}^{(0)} = 1, \forall k, n$ 1: 2: for *t*=1:*I* // Iteration 3: **for** j=1:J // VN calculation Compute $\mu_{i \to (k,n)}^{(t)}$ and $\xi_{i \to (k,n)}^{(t)}$ by (1) 4: 5: endfor for k=1:K, n=1:N // RN calculation 6: 7: Compute $\mu_{(k,n) \to j}^{(t)}$ and $\xi_{(k,n) \to j}^{(t)}$ by (2) 8: endfor **for** *j*=1:*J* // Posterior probability calculation 9: 10: Compute $p^{(t)}(\mathbf{x}_i | \mathbf{y})$ by (3) Compute $\mu_{i,k}^{(t)}$ and $\xi_{i,k}^{(t)}$ by (4) for $m \in \chi_i^S$ 11: 12: endfor 13: endfor

- *R*(*k*) : users associated with resource *k*
- V(j): resources associated with user j

• Equations :

Eq. (1)

$$\begin{aligned} \xi_{j \to (k,n)}^{(t)} &= \left(\frac{1}{\xi_{j,k}^{(t-1)}} - \frac{1}{\xi_{(k,n) \to j}^{(t-1)}}\right)^{-1} \\ \mu_{j \to (k,n)}^{(t)} &= \xi_{j \to (k,n)}^{(t)} \left(\frac{\mu_{j,k}^{(t-1)}}{\xi_{j,k}^{(t-1)}} - \frac{\mu_{(k,n) \to j}^{(t-1)}}{\xi_{(k,n) \to j}^{(t-1)}}\right) \\ Eq. (2) \\ \mu_{(k,n) \to j}^{(t)} &= \frac{1}{h_{j,k}^{(n)}} \left(y_{k}^{(n)} - \sum_{l \in R(k), l \neq j} h_{l,k}^{(n)} \mu_{l \to (k,n)}^{(t)}\right) \\ \xi_{(k,n) \to j}^{(t)} &= \frac{1}{|h_{j,k}^{(n)}|^{2}} \left(\sigma^{2} - \sum_{l \in R(k), l \neq j} \left|h_{l,k}^{(n)}\right|^{2} \xi_{l \to (k,n)}^{(t)}\right) \\ Eq. (3) \\ p^{(t)}(\mathbf{x}_{j}|\mathbf{y}) \propto \prod_{k \in V(j)} I_{k,n \to j}^{(t-1)}(x_{j,k}), \quad I(x|\mu,\xi) = \frac{1}{\sqrt{2\pi\xi}} e^{\frac{-(x-\mu)^{2}}{2\xi}} \\ Eq. (4) \\ \mu_{j,k}^{(t)} &= \sum_{m} p^{(t)}(\mathbf{x}_{j} = \mathbf{c}_{j,m}|\mathbf{y}) c_{j,m,k} \\ \xi_{j,k}^{(t)} &= \sum_{m} p^{(t)}(\mathbf{x}_{j} = \mathbf{c}_{j,m}|\mathbf{y}) \left|c_{j,m,k} - \mu_{j,k}^{(t)}\right|^{2} \end{aligned}$$

Conventional EPA

Conventional EPA flow

Proposed algorithm

Algorithm : Convergence-aware based EPA				
// Initialization				
1:	$\mu_{(k,n)\to j}^{(0)} = 0, \xi_{(k,n)\to j}^{(0)} = \infty, \mu_{j,k}^{(0)} = 0, \xi_{j,k}^{(0)} = 1, \forall j \in \mathbb{N}$	∀k,n		
2:	for <i>t</i> =1: <i>I</i> // Iteration			
3:	for <i>j</i> =1: <i>J</i> // VN calculation			
4:	if (User Termination) (Antenna Termination)			
5:	$\mu_{j \to (k,n)}^{(t)} = \mu_{j \to (k,n)}^{(t-1)}, \xi_{j \to (k,n)}^{(t)} = \xi_{j \to (k,n)}^{(t-1)}, \forall k, n$			
6:	else			
7:	Compute $\mu_{j \to (k,n)}^{(t)}$ and $\xi_{j \to (k,n)}^{(t)}$ by (1)			
8:	endif			
9:	endfor			
10:	for $k=1:K$, $n=1:N$ // RN calculation			
11:	if (User Termination) (Antenna Termination)			
12:	$\mu_{(k,n)\to j}^{(t)} = \mu_{(k,n)\to j}^{(t-1)}, \xi_{(k,n)\to j}^{(t)} = \xi_{(k,n)\to j}^{(t-1)}, \forall j$			
13:	else			
14:	Compute $\mu_{(k,n) \to j}^{(t)}$ and $\xi_{(k,n) \to j}^{(t)}$ by (2)			
15:	endif			
16:	endfor			

17:	for <i>j</i> =1: <i>J</i> // Posterior probability calculation	
18:	if (User Termination)	
19:	$p^{(t)}(\mathbf{x}_j \mathbf{y}) = p^{(t-1)}(\mathbf{x}_j \mathbf{y})$	
20:	else	
21:	Compute $p^{(t)}(\mathbf{x}_j \mathbf{y})$ by (3)	
22:	endif	
23:	Check if $(t > I_{User})$ && $(p^{(t)}(\mathbf{x}_j \mathbf{y}) > \Omega_{User}$ for User	
	Termination	
24:	Check if $\sum_{k \in R(j)} \xi_{j \to (k,n)}^{(t)} < \Omega_{Ant}$ for Antenna Termination	
25:	Perform <i>Codebook Reduction</i> and obtain χ_j^s	
26:	Compute $\mu_{j,k}^{(t)}$ and $\xi_{j,k}^{(t)}$ by (4) for $m \in \chi_j^S$	
27:	endfor	
28:	endfor	

Parameter :

- Ω_{User} : Threshold for user termination
- Ω_{Ant} : Threshold for antenna termination
- Ω_{Acc} : Threshold for codebook reduction

User termination

23:	Check if $(t > I_{User})$ && $(p^{(t)}(\mathbf{x}_j \mathbf{y}) > \Omega_{User}$ for User	
	Termination	
3:	for $j=1:J$ // VN calculation	
4:	if (User Termination) (Antenna Termination)	
10:	for <i>k</i> =1: <i>K</i> , <i>n</i> =1: <i>N</i> // RN calculation	
11:	if (User Termination) (Antenna Termination)	
17:	for <i>j</i> =1: <i>J</i> // Posterior probability calculation	
18:	if (User Termination)	

Antenna termination

24:	Check if $\sum_{k \in R(j)} \xi_{j \to (k,n)}^{(t)} < \Omega_{Ant}$ for Antenna Termination
3:	for <i>j</i> =1: <i>J</i> // VN calculation
4:	if (User Termination) (Antenna Termination)
10:	for <i>k</i> =1: <i>K</i> , <i>n</i> =1: <i>N</i> // RN calculation
11:	if (User Termination) (Antenna Termination)

Codebook reduction

25:	Perform <i>Codebook Reduction</i> and obtain χ_j^S
26:	Compute $\mu_{j,k}^{(t)}$ and $\xi_{j,k}^{(t)}$ by (4) for $m \in \chi_j^S$

User termination

- Parameter :
 - *I* : iteration time
 - *I*_{User} : iteration constraint
 - N : number of received antennas
 - Ω_{User} : threshold for user termination

Antenna termination

- Parameter :
 - *I* : iteration time
 - *N* : number of received antennas
 - Ω_{Ant} : threshold for antenna termination

Codebook reduction

- Parameter :
 - *I* : iteration time
 - *N* : number of received antennas
 - Ω_{ACC} : threshold for codebook reduction

Algorithm

Proposed convergence-aware based EPA

	Mul.	Div.	Add.
Conventional EPA	14784	4632	20184
	(100%)	(100%)	(100%)
$\Omega_{User} = 0.999, I_{User} = 2$	8207.6	3629.1	15777.7
	(55.5%)	(78.4%)	(78.2%)
$\begin{split} \Omega_{User} &= 0.999, I_{User} = 2\\ \Omega_{Ant} &= 0.1, \Omega_{ACC} = 0.99 \end{split}$	5492.4	2464.6	9465.3
	(37.2%)	(53.2%)	(46.9%)
$\Omega_{User} = 0.9999, I_{User} = 2$	5546.1	2513.8	9574.2
$\Omega_{Ant} = 0.1, \Omega_{ACC} = 0.99$	(37.5%)	(54.2%)	(47.4%)

Conclusion

- The proposed convergence-aware EPA contains three termination schemes.
 - User termination
 - Antenna termination
 - Codebook reduction

Complexity reduction is achieved by stopping unnecessary computations for information update. And the simulation result shows that the algorithm only needs 37%, 54%, and 47% of the computation complexity in multiplication, divisions, and additions compared to the conventional one.

Reference

- [1] F. Wei, W. Chen, Y. Wu, J. Li, Y. Luo, "Toward 5G wireless interface technology: enabling nonorthogonal multiple access in the sparse code domain," *IEEE Vehi. Tech. Mag.*, pp. 18-27, Oct. 2018.
- [2] Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo, "Nonorthogonal multiple access for 5G and beyond," Proc. IEEE, vol. 105, no. 12, pp. 2347–2381, Dec. 2017.
- [3] H. Nikopour and H. Baligh, "Sparse code multiple access," in *Proc. IEEE 24th PIMRC*, London, U.K., Sep. 2013, pp. 332–336.
- [4] M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh, "SCMA codebook design," in *Proceedings of IEEE VTC Fall*, Sep. 2014.
- [5] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, "Factor graphs and the sum-product algorithm," *IEEE Trans. Inf. Theory*, vol. 47, no. 2, pp. 498–519, Feb. 2001.
- [6] L. Yang, X. Ma, and Y. Siu, "Low complexity MPA detector based on sphere decoding for SCMA," IEEE Commun. Lett., vol. 21, no. 8, pp. 1855–1858, Aug. 2017.
- [7] X. Ma, L. Yang, Z. Chen, and Y. Siu, :Low complexity detection based on dynamic factor graph for SCMA systems," IEEE Commum. Lett., vol. 21, no. 12, pp. 2666- 2669, Dec. 2017.
- [8] X. Meng, Y. Wu, Y. Chen, and M. Cheng, "Low complexity receiver for uplink SCMA system via expectation propagation," in *Proc. IEEE WCNC*, 2017.
- [9] W. Yuan, N. Wu, Q. Guo, Y. Li, C. Xing, J. Kuang, "Iterative receivers for downlink MIMO-SCMA: message passing and distributed cooperative detection," *IEEE Trans. Wireless Commum.*, Vol. 17, no. 5, pp. 3444-3458, May 2018.
- [10] F. Wei, W. Chen, Y. Wu, J. Ma, and T. A. Tsiftsis, "Message-passing receiver design for joint channel estimation and data decoding in

uplink grant-free SCMA systems," IEEE Trans. Wireless Commum., Vol. 18, no. 1, pp. 167-181, Jan. 2018.

[11] Y. Dong, H. Li, Z. Zhang, S. Zhao, X. Wang, R. Zou, and X. Dai, "A low complexity reliability aware based expectation propagation

algorithm for uplink SCMA systems," in Proc. IEEE ICCS, 2018.

[12] T. P. Minka, "Expectation propagation for approximate Bayesian inference" in Uncertainty in Artificial Intelligence, 2001,

NCU DigitalSystemResearchLab