Challenge and Datasets	Systems Overview		Tracks 3 and 4	Summary

BUT System for the Second DIHARD Speech Diarization Challenge

Federico Landini¹, Shuai Wang^{1,2}, Mireia Diez¹, Lukáš Burget¹, Pavel Matějka¹, Kateřina Žmolíková¹, Ladislav Mošner¹, Anna Silnova¹, Oldřich Plchot¹, Ondřej Novotný¹, Hossein Zeinali¹, Johan Rohdin¹

¹Brno University of Technology, Faculty of Information Technology, IT4I Centre of Excellence, Czechia ²Speechlab, Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

landini@fit.vutbr.cz, mireia@fit.vutbr.cz

ICASSP 2020

Challenge and Datasets	Systems Overview		Tracks 3 and 4	Summary

Challenge and Datasets

3 Track 1

Challenge and Datasets	Systems Overview	Track 1	Tracks 3 and 4	Summary
●○○	00	00000000	O	00
Challenge and Da	atasets			

Challenge and Datasets ●00	Systems Overview	Track 1 000000000	Tracks 3 and 4 O	Summary 00
Challenge and D	atasets			

Challenge and Datasets ●00	Systems Overview	Track 1 000000000	Tracks 3 and 4 O	Summary 00
Challenge and D	atasets			

- Datasets
 - Track 1: DIHARD II with oracle VAD
 - Track 2: DIHARD II with system VAD
 - Track 3: CHiME-5 with oracle VAD
 - Track 4: CHiME-5 with system VAD

Challenge and Datasets ●00	Systems Overview	Track 1 000000000	Tracks 3 and 4 O	Summary 00
Challenge and D	atasets			

Datasets

3/19

- Track 1: DIHARD II with oracle VAD
- Track 2: DIHARD II with system VAD
- Track 3: CHiME-5 with oracle VAD
- Track 4: CHiME-5 with system VAD
- Our results allowed us to obtain the first position on all tracks

Challenge and Datasets	Systems Overview	Track 1	Tracks 3 and 4	Summary
○●○	00	00000000	O	00
DIHARD II corpu	IS			

- Single-channel data
 - Recordings from different sources comprising audiobooks, child language, courtroom, meetings, restaurant conversations, interviews, web videos and more
 - Lasting between 5 to 10 minutes and accounting for around 2 hours per source
 - Amount of speakers per recording ranging from 1 to 10
- Development set with 23:49 hours and evaluation set with 22:29 hours
- Systems evaluated in terms of the Diarization Error Rate (DER)
- No collar used for the evaluation and overlapped speech regions are evaluated

Challenge and Datasets	Systems Overview	Track 1	Tracks 3 and 4	Summary
00●	00	00000000	O	00
CHiME-5 corpus				

- Multi-channel data from the CHiME-5 dinner party corpus
 - conversational speech collected in dinner parties at homes with 4 participants
 - lasting between 2 to 3 hours and held in three locations: kitchen, dining, living
- Each session collected with 6 microphone arrays
- Each array evaluated individually
- Three sets: train, development and evaluation
 - with 16, 2 and 2 sessions respectively
 - with 40:33, 4:27 and 5:12 hours respectively
- Systems evaluated in terms of the Diarization Error Rate (DER)
- No collar used for the evaluation and overlapped speech regions are evaluated

Challenge and Datasets	Systems Overview		Tracks 3 and 4	Summary
	•0			

• Track 2

Challenge and Datasets	Systems Overview			Tracks 3 and 4	Summary
000	0•	00000000	0	0	00

• Tracks 3 and 4

Challenge and Datasets	Systems Overview		Tracks 3 and 4	Summary
	00			

Tracks 3 and 4

Overlap

detector

x-vectors

extraction

Oracle VAD

Overlap

labeling

→ output labels

• We explored four approaches for pre-processing

- Denoising provided by organizers ¹
- Denoising based on Wave-U-Net ²
- Denoising based on neural network autoencoders ³
- Dereverberating with weighted prediction error (WPE) ⁴
- The best performing one was WPE

¹https://github.com/staplesinLA/denoising_DIHARD18

²C. Macartney and T. Weyde, Improved speech enhancement with the wave-u-net

³O. Plchot et al., Audio Enhancing with DNN Autoencoder for Speaker Recognition

⁴T. Nakatani et al., Speech dereverberation based on variance-normalized delayed linear prediction, and L. Drude et al., NARA-WPE: A Python package forweighted prediction error dereverberation in Numpy and Tensorflow for online and offline processing

detector

• For Track 1 the oracle voice activity detection labels are used

extraction

Oracle VAD

→ output labels

labeling

- x-vectors: DNN based speaker embeddings⁵
- $\bullet\,$ Extractor trained on VoxCeleb 1 and 2 with augmentations with some tweaks with respect to Kaldi SRE16 $\rm recipe^6$
- x-vectors extracted on 1.5s windows every 0.25s⁷
 - Instead of standard 1.5s windows every 0.75s

⁵D. Snyder et al., *Deep Neural Network Embeddings for Text-Independent Speaker Verification* ⁶More details in *BUT System Description for DIHARD Speech Diarization Challenge 2019* ⁷Comparative analysis in *Optimizing Bayesian HMM based x-vector clustering for the second DIHARD speech diarization challenge*

Overlap

detector

x-vectors

extraction

• Agglomerative hierarchical clustering with similarity matrix

Oracle VAD

Overlap

labeling

→ output labels

Overlap

Overlap

trained on VoxCeleb segments

Oracle VAD

Itrained on DIHARD II development segments

x-vectors

→ output labels

- Agglomerative hierarchical clustering with similarity matrix Based on the interpolation of two PLDA models:
 - trained on VoxCeleb segments
 - Itrained on DIHARD II development segments

	PLDA model			
DER	VoxCeleb	Interpolated		
dev	20.46	19.74		
eval	21.12	20.96		

• More analysis in *Optimizing Bayesian HMM based x-vector clustering* for the second DIHARD speech diarization challenge

DER		PLDA model			
		VoxCeleb	Interpolated		
	dev	20.46	19.74		
АПС	eval	21.12	20.96		
VBx	dev	18.34	17.90		
	eval	19.14	18.39		

DER		PLDA model			
		VoxCeleb	Interpolated		
	dev	20.46	19.74		
АПС	eval	21.12	20.96		
VBx	dev	18.34	17.90		
	eval	19.14	18.39		

x-vectors

extraction

Oracle VAD

Overlap

detector

Overlap

labeling

→ output labels

- VBx has a 0.25s resolution so we use VB resegmentation with MFCCs every 10ms
- Same modeling as before in terms of states and transitions

• VBx has a 0.25s resolution so we use VB resegmentation with MFCCs every 10ms

detector

labeling

• Same modeling as before in terms of states and transitions

extraction

• Speaker distributions are modeled by an i-vector extractor like model (i.e GMM with parameters constrained by eigenvoice priors) trained on VoxCeleb

- VBx has a 0.25s resolution so we use VB resegmentation with MFCCs every 10ms
- Same modeling as before in terms of states and transitions
- Speaker distributions are modeled by an i-vector extractor like model (i.e GMM with parameters constrained by eigenvoice priors) trained on VoxCeleb

DER	VBx	+ resegmentation
dev	17.90	18.23
eval	18.39	18.38

x-vectors

extraction

Oracle VAD

• Previous steps output one speaker per frame but there could be overlapped speech

Overlap

detector

Overlap

labeling

→ output labels

• Previous steps output one speaker per frame but there could be overlapped speech

detector

• We used a logistic regression classifier to determine if x-vectors correspond to overlapped speech or not

extraction

Oracle VAD

→ output labels

labeling

• Previous steps output one speaker per frame but there could be overlapped speech

detector

labeling

• We used a logistic regression classifier to determine if x-vectors correspond to overlapped speech or not

extraction

• Then, a heuristic assigns each frame in an overlapped speech segment to the two closest speakers (in time) according to the diarization labels from the previous step

• Previous steps output one speaker per frame but there could be overlapped speech

detector

labeling

• We used a logistic regression classifier to determine if x-vectors correspond to overlapped speech or not

extraction

• Then, a heuristic assigns each frame in an overlapped speech segment to the two closest speakers (in time) according to the diarization labels from the previous step

DER	No ov. proc.	With ov. proc.
dev	18.23	18.02
eval	18.38	18.21

Challenge and Datasets	Systems Overview	Track 1 00000000●	Tracks 3 and 4 O	Summary 00
Track 1 recipe				

• https://github.com/BUTSpeechFIT/VBx

Challenge and Datasets	Systems Overview	Track 1 00000000●	Tracks 3 and 4 O	Summary 00
Track 1 recipe				

• https://github.com/BUTSpeechFIT/VBx

- Only the most relevant modules are included
- Simplification in PLDA interpolation which improves results

Challenge and Datasets	Systems Overview	Track 1 00000000●	Tracks 3 and 4 O	Summary 00
Track 1 recipe				

• https://github.com/BUTSpeechFIT/VBx

- Only the most relevant modules are included
- Simplification in PLDA interpolation which improves results

DER	No WPE	With WPE
dev	17.87	17.64
eval	18.31	18.09

- DNN-based VAD instead of oracle:
 - trained for binary, speech/non-speech, classification of 10ms speech frames
 - trained on the development set
- Slightly simpler pipeline: no overlap detection and PLDA trained on VoxCeleb

- DNN-based VAD instead of oracle:
 - trained for binary, speech/non-speech, classification of 10ms speech frames
 - trained on the development set
- Slightly simpler pipeline: no overlap detection and PLDA trained on VoxCeleb

DER	Track 1	Track 2
dev	18.23	23.81
eval	18.38	27.11

- DNN-based VAD instead of oracle:
 - trained for binary, speech/non-speech, classification of 10ms speech frames
 - trained on the development set
- Slightly simpler pipeline: no overlap detection and PLDA trained on VoxCeleb

DER	Track 1	Track 2
dev	18.23	23.81
eval	18.38	27.11

• WPE method applied on recordings from all channels

• NN-based VAD trained on Fisher English data for Track 4

- NN-based VAD trained on Fisher English data for Track 4
- Features: x-vectors computed on 1.5s windows every 0.75s

- NN-based VAD trained on Fisher English data for Track 4
- Features: x-vectors computed on 1.5s windows every 0.75s
- Average the similarity score matrices of all channels

- WPE method applied on recordings from all channels
- NN-based VAD trained on Fisher English data for Track 4
- Features: x-vectors computed on 1.5s windows every 0.75s
- Average the similarity score matrices of all channels
- Results:

DER Track 3	CH1	CH2	CH3	CH4	Fusion
dev+train	55.43	55.34	55.78	54.95	53.58
eval	48.55	48.37	48.19	48.3	47.93

- NN-based VAD trained on Fisher English data for Track 4
- Features: x-vectors computed on 1.5s windows every 0.75s
- Average the similarity score matrices of all channels
- Results:

DER 7	Frack 3	CH1	CH2	CH3	CH4	Fusion
dev+	-train	55.43	55.34	55.78	54.95	53.58
e١	/al	48.55	48.37	48.19	48.3	47.93
	DER	Fusion	Track 3	Fusion	Track 4	_
	eval	45	.65	58	.92	

Challenge and Datasets	Systems Overview 00	Track 1 00000000	Tracks 3 and 4 O	Summary ●0
Summary				

- x-vectors have become the cornerstone for top-performing diarization systems
- VBx allows for better performance than simple AHC
 - Even more when a better PLDA model is used to compare the x-vectors
 - Thus, adapting the PLDA model to in-domain data fosters performance
- With the current performance on DIHARD II data, overlapped speech accounts for more than 50% of DER meaning this has to be addressed in the future
- Recipe for Track 1: https://github.com/BUTSpeechFIT/VBx
- CHiME presents a challenging scenario with considerable room for improvement

DER		PLDA model		% files	
		VoxCeleb	Interpolated	Same	Improved
AHC	dev	20.46	19.74	9%	59%
	eval	21.12	20.96	11%	45%
VBx	dev	18.34	17.90	14%	60%
	eval	19.14	18.39	22%	56%

