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Introduction

∎ HSQC NMR experience
NMR : Nuclear Magnetic Resonance, a spectroscopy technique
used to identify molecules in a given chemical mixture.
2D HSQC : Heteronuclear Single Quantum Coherence, a
NMR experience used to determinate the correlations between
a carbon and its attached proteins.
BSS : Blind Source Separation, an efficient mathematical
method used to analyze data which are modeled as the linear
combination of elementary sources or components.
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Introduction
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Introduction

∎ Problem statement

X = AS +N

X = (xm,`) ∈ RM×L : given mixtures

S = (sn,`) ∈ RN×L : unknown sources

A = (am,n) ∈ RM×N : unknown mixing matrix

N = (nm,`) ∈ RM×L : acquisition noise

∎ Difficulties
7 Indeterminacies of solutions

(∃Λ ∈ RN×N) such that A′ = AΛ et S′ = Λ−1S

where Λ is a diagonal or a permutation matrix.
7 2D NMR spectra present a high level of sparsity with a spectral
overlap and poor resolution.

5/15



Introduction Theory Application to 2D HSQC NMR Conclusions

Variational formulation

∎ Regularized approach

minimize
A, S

Θ(A,S) ∶= Φ(A,S)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
Data fidelity

+ Ψ(A,S)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

Regularization term

∎ Standard choices [Cherni et al., 2019]

minimize
A,S

1
2
∥X −AS∥2F + λAΨA(A) + λSΨS(S)

λA and λS are regularization parameters.
ΨA and ΨS are regularization functions.

ι+(u) = {
0 if ui ≥ 0 ∀i
+∞ otherwise.

`1(u) =
⎛
⎝

L

∑
i=1
∣ui ∣
⎞
⎠

Ent(u) =
L

∑
i=1

ent(ui)

ent(u) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u log(u) if u > 0
0 if u = 0
+∞ otherwise.6/15
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Proposed approach

∎ Generalization

minimize
A, S

β-div(A,S) + λAΨA(A) + λSΨS(S)

where

(∀ (u,v) ∈ (RL
+)2) β-div(u,v) =

L

∑
i=1
β-div(ui ∣vi)

and for all (u, v) ∈ R2
+

β-div(u∣v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
β(β−1) (u

β + (β − 1)vβ − βuvβ−1) if β ∈ R ∖ {0,1}
u
v − log(uv ) − 1 if β = 0
u log(uv ) − u + v if β = 1

● Frobenius norm is a special case of β-div where β = 2.
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MM based multiplicative algorithm

∎ Generic alternating algorithm [Hunter and Lange, 2000]

For k = 0,1, . . .
⎢⎢⎢⎢⎢⎢⎣

Ak+1 = argmin
A

β-div(X,ASk) + λAΨA(A) (I)

Sk+1 = argmin
S

β-div(X,Ak+1S) + λSΨS(S) (II)

and for β > 2
(I) ΨA = ι+

Ak+1 =
⎛
⎝
(X⊙ (AkS)⊙(β−2))ST

(AkS)⊙(β−1)ST

⎞
⎠

⊙ 1
β−1

+
⊙Ak

(II)-a) ΨS = ι+

Sk+1 = (
AT (X⊙ (ASk)⊙(β−2))

AT (ASk)⊙(β−1)
)
⊙ 1

β−1

+
⊙ Sk

8/15



Introduction Theory Application to 2D HSQC NMR Conclusions

(II)-b) ΨS = `1 + ι+

Sk+1 = (
AT (X⊙ (ASk)⊙(β−2)) − λS

AT (ASk)⊙(β−1)
)
⊙ 1

β−1

+
⊙ Sk

(II)-c) ΨS = Ent+ι+

Sk+1 = (
γ

α
W(α

γ
exp(− δ

γ
)))

⊙ 1
β−1

+
⊙ Sk

where ⊙ denotes the Hadamard product, W is the W-Lambert
function [Corless et al., 1996] and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α = AT (ASk)⊙(β−1) ⊙ Sk ,

γ = λS
β−1 Sk ,

δ = λS(Sk + Sk ⊙ log(Sk)) −AT (X⊙ (ASk)⊙(β−2))⊙ Sk .
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2D HSQC NMR data

∎ Data

Real case Simulated case
X ∈ R5×1024×2048 : 5 mixtures X is simulated following model
S ∈ R4×1024×2048 : 4 sources X = AS +N
A ∈ R5×4 : a mixture matrix N ∼ N (0, σ2), σ = 2 × 104

∎ Performance criteria [Vincent et al., 2006, Moreau et al., 1994]
SIR : Source to Interference Ratio
SDR : Source to Distortion Ratio
SAR : Source to Artifacts Ratio
Amari Index
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Results on simulated data

Data fidelity term λS ΨS SDR SIR SAR Amari-index

Squared Frobenius

ι+ 18.073 28.854 18.514 0.0121

0.1σ
`1 + ι+ 30.299 31.475 39.462 0.0272
Ent+ι+ 18.287 36.859 18.354 0.0090

σ
`1 + ι+ 21.140 21.788 29.872 0.0492
Ent+ι+ 17.334 36.909 17.421 0.0198

10σ
`1 + ι+ 17.041 25.581 22.104 0.0189
Ent+ι+ 16.021 30.625 18.216 0.0861

β-divergence

ι+ 36.711 40.854 41.571 0.0054

0.1σ
`1 + ι+ 36.531 40.853 41.255 0.0054
Ent+ι+ 36.711 40.854 41.570 0.0054

σ
`1 + ι+ 32.041 40.868 34.135 0.0054
Ent+ι+ 36.710 40.852 41.570 0.0054

10σ
`1 + ι+ 22.906 41.140 23.102 0.0054
Ent+ι+ 36.688 40.851 41.513 0.0054

Average criteria obtained with various λS for β = 3.
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Results on real data
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Pure sources (a), estimated sources using Frobenius norm (b),
estimated sources using β-div (c).

Data fidelity term ΨS SDR SIR SAR Amari-index

Squared Frobenius
`1 + ι+ 04.984 13.956 07.951 0.1804
Ent+ι+ 05.755 14.434 08.446 0.1793

β-divergence
`1 + ι+ 07.240 11.487 10.574 0.1610
Ent+ι+ 07.220 11.396 10.632 0.1657

Average criteria obtained with λS = 10σ for β = 3.
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Conclusion & perspectives

✓ The β-divergence combined with `1 norm or Ent function en-
sures the BSS of the 2D HSQC NMR.
✓ In the real case, better SDR and SAR values are obtained
using β-divergence. However, a slight deterioration on the SIR
values is noticed.

▸ Optimize the choice of λS.
▸ Verify the linearity of the model in the context of 2D NMR.
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