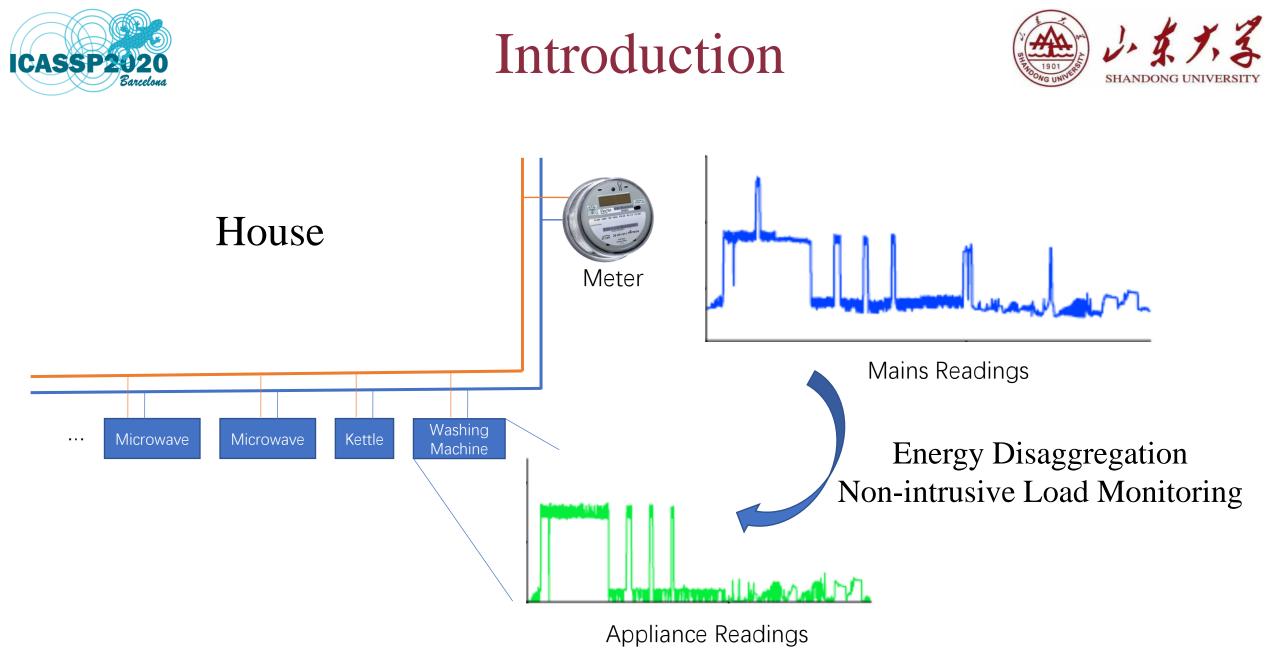


SEQUENCE-TO-SUBSEQUENCE LEARNING WITH CONDITIONAL GAN FOR POWER DISAGGREGATION

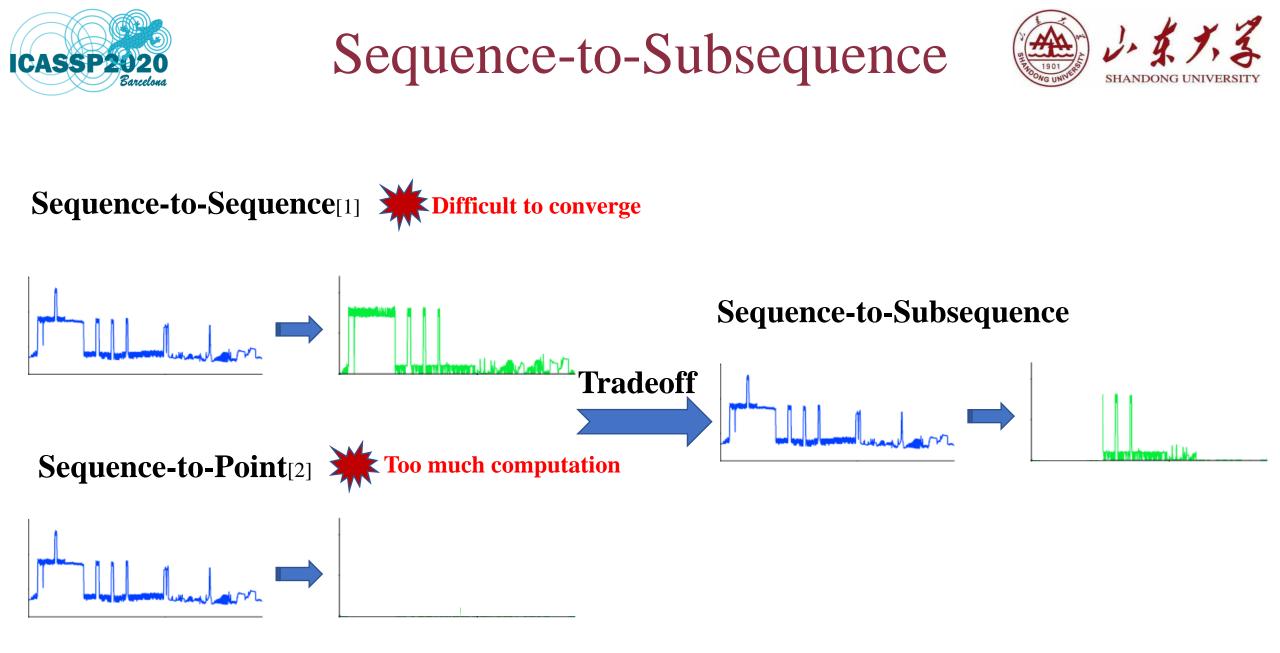
Yungang Pan, Ke Liu, Zhaoyan Shen*, Xiaojun Cai, Zhiping Jia

- Introduction
- Method
 - Sequence-to-Subsequence
 - Architecture
 - Overview
 - Design principles
 - Model
 - Training and Inference
- Evaluations and Results
- Summary

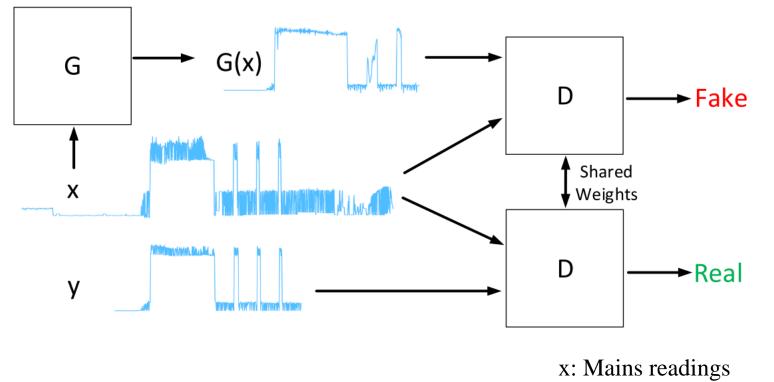


Introduction

- Applications:
 - Detailed bill information
 - Occupancy detection
 - New companies services
 - Illegal load detections
- Common techniques:
 - Autoencoders
 - Hidden Markov Models
 - Deep Learning
 - Convolutional Neural Network
 - Long Short Term Memory



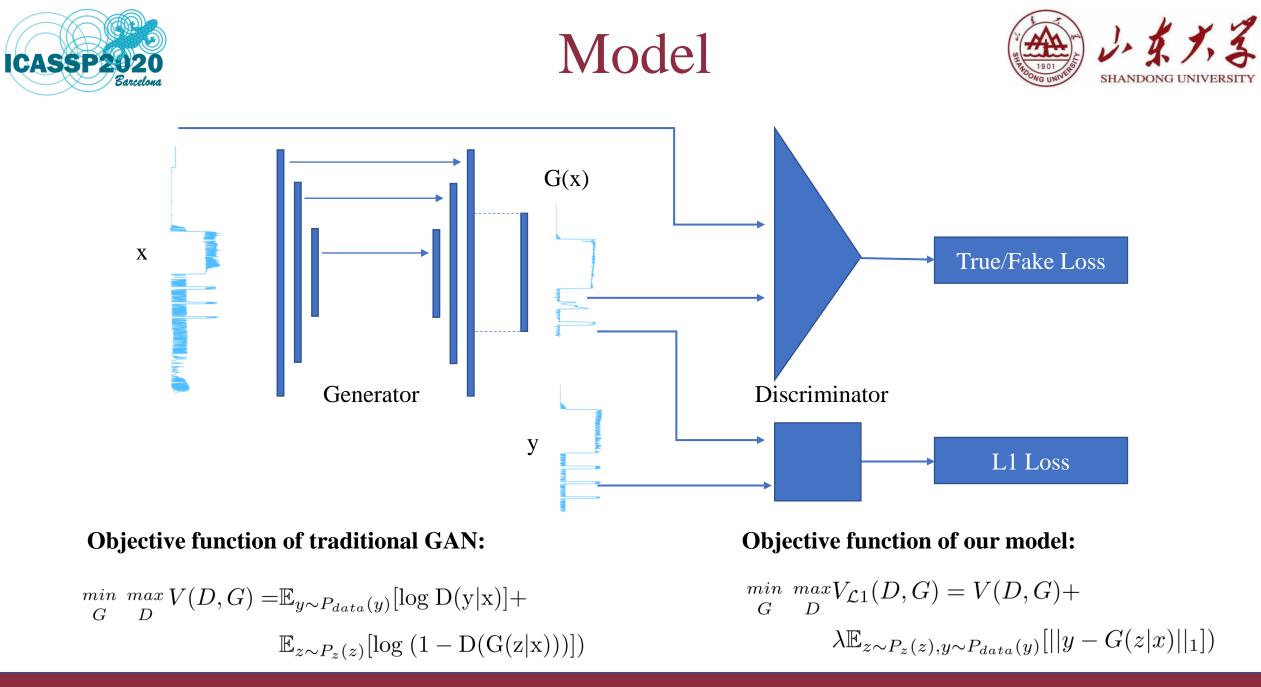
We model the energy disaggregation problem as a **sequence generation** problem.



y: The corresponding real appliance readings G(x): The generated appliance readings

Design Principles

- The underlying structure between the mains readings and the individual appliance readings should share some common characteristics or be similar in many occasions. (U-Net [3])
- Learning the model from too many examples yield poorer qualitative results compared with a smaller example set. (Instance Normalization [4])
- Use L1 loss to encourage the model to capture the low-frequency information, while applying the fully convolutional network (FCN [5]) into discriminator to optimize the quality of high-frequency information.



Training and Inference

- Training phase:
 - One model corresponds to one kind of target appliance.
 - Applying instance normalization requires that the batch size equals to 1.
 - Discriminator and Generator are trained alternatively-one step on Discriminator, then another step on Generator. We use SGD optimizer for Discriminator and Adam optimizer for Generator.
- Inference phase:
 - Only Generator works. Each execution produces one corresponding appliance sequence.

Evaluations

- Competitor solutions:
 - Sequence-to-Point Method proposed in literature [2]
- Data sets:
 - UK-DALE [6]
 - **REFIT** [7]
- Essential parameters:
 - Readings interval: 6 seconds
 - Window width of mains readings : 1024
 - Window width of target appliance readings : 512
 - Batch size: 1
 - The ratio between off-class and on-class of the target appliance: 1
 - The ratio between L1 loss and discriminator loss λ : 100

Evaluations

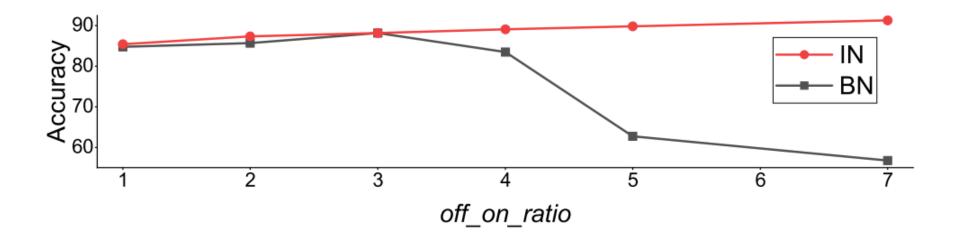
- Measure Metrics:
 - normalized Signal Aggregate Error (SAE)
 - Mean Absolute Error (MAE)
 - Estimated Accuracy (Acc.)
- For transferability:
 - Test the model on "unseen" houses during the training process
- Implementation:
 - Python
 - TensorFlow
 - NVIDIA RTX 2080
- Source code:
 - <u>https://github.com/DLZRMR/seq2subseq</u>

Performance comparison between seq2subseq and seq2point on UK-DALE and REFIT. The best results are shown in bold.

Metric	Methods	WM	KE	MW.	FR	DW	Avg
MAE	U(ours)	7.11	3.59	3.14	11.86	13.52	7.84
	U(s2p)	12.66	7.44	8.66	20.89	27.70	15.47
	R(ours)	16.72	6.43	5.88	16.77	4.80	10.12
	R(s2p)	16.85	6.83	12.66	20.02	12.26	13.72
SAE	U(ours)	0.120	0.026	0.030	0.070	0.370	0.123
	U(s2p)	0.284	0.069	0.486	0.121	0.645	0.321
	R(ours)	0.162	0.106	0.125	0.100	0.172	0.133
	R(s2p)	2.610	0.130	0.170	0.330	0.260	0.700
	K (s 2 p)	2.010	0.150	0.170	0.550	0.200	0.700

Our method outperforms seq2point (s2p) in all metrics for all appliances, reducing MAE by 97%, SAE by 161% for UK-DALE and MAE by 35%, SAE by 426% for REFIT on average, respectively.

Accuracy of Washing Machine on "unseen" house 2 from UK-DALE using Instance Normalization and Batch Normalization (batch size=32), respectively.



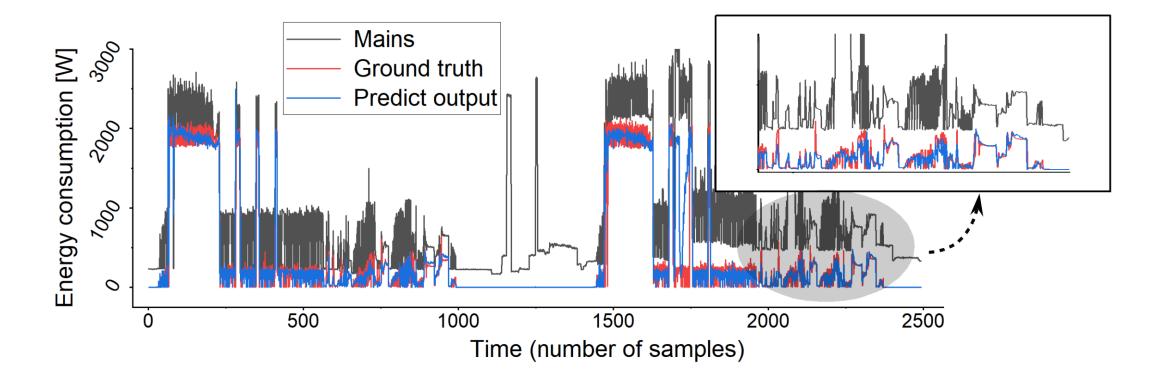
This phenomenon shows that too many examples and high *off_on_ratio* will have negative effects on the results.

Testing on "unseen" UK-DALE house 2, after training our models on all other UK-DALE houses. The best results are shown in bold.

Metric	Methods	WM	KE	MW	FR	DW	Avg
Acc.	I+U	85.2	90.3	77.5	85.3	77.2	83.1
	N-I+U	57.0	72.2	58.5	56.2	51.6	59.1
	I+N-U	79.5	50.0	49.9	79.9	50.0	61.9
	N-I+N-U	50.0	50.0	50.0	50.0	50.0	50.0
MAE	I+U	7.11	3.59	3.14	11.86	13.52	7.84
	N-I+U	20.65	10.34	5.77	35.44	28.68	20.18
	I+N-U	9.87	18.6	6.96	16.21	29.64	16.26
	N-I+N-U	24.03	19.86	6.96	40.47	29.65	24.19
SAE	I+U	0.120	0.026	0.030	0.070	0.370	0.123
	N-I+U	0.317	0.081	0.365	0.477	0.709	0.390
	I+N-U	0.034	1.000	1.000	0.062	1.000	0.619
	N-I+N-U	1.000	1.000	1.000	1.000	1.000	1.000

Applying both Instance Normalization and U-Net to our model can improve the performance dramatically.

Example Outputs



Example outputs of Washing Machine on "unseen" house 2 from UK-DALE (We enlarge the right part of the figure to make it clear).

- We propose the **sequence-to-subsequence** learning method, balancing the convergence difficulty in deep neural networks and the amount of computation during the inference period.
- Build the model based on conditional GAN.
- With discriminator and L1 loss, our model has the ability to capture the lowlevel and high-level information simultaneously.
- The U-Net and instance normalization techniques improve the performance of our model.

[1] Jack Kelly and William Knottenbelt, "Neural nilm:deep neural networks applied to energy disaggregation," 2015.

[2] Chaoyun Zhang, Mingjun Zhong, ZongzuoWang, Nigel Goddard, and Charles Sutton, "Sequence-to-point learning with neural networks for nonintrusive load monitoring," 2017.

[3] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, "U-net: Convolutional networks for biomedical image segmentation," in International Conference on Medical Image Computing & Computer-assisted Intervention, 2015.

[4] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky, "Instance normalization: The missing ingredient for fast stylization," CoRR, vol. abs/1607.08022, 2016.

[5] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2015.
[6] Jack Kelly and William Knottenbelt, "The uk-dale dataset, domestic appliance-level electricity demand and whole-house demand from five uk homes," Scientific Data, vol. 2, pp. 150007, 2015.

[7] D Murray, L Stankovic, and V Stankovic, "An electrical load measurements dataset of united kingdom households from a two-year longitudinal study," Scientific Data, vol. 4, pp. 160122, 2017.

Thank you!

Questions?