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 Applications:
* Detailed bill information
« Occupancy detection
« New companies services
* Illegal load detections

« Common technigques:
« Autoencoders
 Hidden Markov Models

* Deep Learning
 Convolutional Neural Network
« Long Short Term Memory
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We model the energy disaggregation problem as a sequence generation problem.

G [ G(x

D — Fake
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Weights

D —Real

X: Mains readings
y: The corresponding real appliance readings
G(X): The generated appliance readings
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* The underlying structure between the mains readings and the individual

appliance readings should share some common characteristics or be similar in
many occasions. (U-Net [3)

« Learning the model from too many examples yield poorer qualitative results
compared with a smaller example set. (Instance Normalization [4])

« Use L1 loss to encourage the model to capture the low-frequency information,
while applying the fully convolutional network (FCN [51) into discriminator to
optimize the quality of high-frequency information.
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Objective function of traditional GAN: Objective function of our model:
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 Training phase:

« One model corresponds to one kind of target appliance.

« Applying instance normalization requires that the batch size equals to 1.
 Discriminator and Generator are trained alternatively-one step on

Discriminator, then another step on Generator. We use SGD optimizer
for Discriminator and Adam optimizer for Generator.

* |Inference phase:

« Only Generator works. Each execution produces one corresponding
appliance sequence.
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« Competitor solutions:
 Sequence-to-Point Method proposed in literature [2]
* Data sets:
e UK-DALE 6]
 REFIT 17
 Essential parameters:
 Readings interval: 6 seconds
* Window width of mains readings : 1024
Window width of target appliance readings : 512
Batch size: 1
The ratio between off-class and on-class of the target appliance: 1
The ratio between L1 loss and discriminator loss A: 100
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Measure Metrics:
« normalized Signal Aggregate Error (SAE)
e Mean Absolute Error (MAE)
 Estimated Accuracy (Acc.)
For transferability:
* Test the model on ”unseen” houses during the training process
Implementation:
 Python
« TensorFlow
 NVIDIARTX 2080
Source code:
e https://github.com/DLZRMR/seq2subseq

Shandong University Embedded System Lab


https://github.com/DLZRMR/ seq2subseq

Vo h L

SHANDONG UNIVERSITY

ICAS§F% Results

Bancelona

Performance comparison between seq2subseq and seg2point on UK-DALE and
REFIT. The best results are shown in bold.

Metric | Methods | WM KE MW. FR DW  Avg
U(ours) | 711 359 314 1186 1352 7.84
U(s2p) | 12.66 7.44  8.66 2089 27.70 15.47

MAE ' —ours) 11672 643 588 1677 480 10.12
R(s2p) | 1685 683 1266 2002 1226 13.72
Ulours) | 0.120  0.026 0.030 _0.070 0370 0.123

ap | UG2D) | 0284 0060 0486 0121 0645 0321

R(ours) | 0.162 0.106 0.125 0.100 0.172 0.133
R(s2p) | 2.610 0.130 0.170 0.330 0.260 0.700

Our method outperforms seg2point (s2p) in all metrics for all appliances, reducing
MAE by 97%, SAE by 161% for UK-DALE and MAE by 35%, SAE by 426% for

REFIT on average, respectively.
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Accuracy of Washing Machine on unseen’ house 2 from UK-DALE using
Instance Normalization and Batch Normalization (batch size=32), respectively.
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This phenomenon shows that too many examples and high off _on_ratio will have
negative effects on the results.
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Testing on “unseen” UK-DALE house 2, after training our models on all other
UK-DALE houses. The best results are shown in bold.

Metric | Methods | WM KE MW FR DW Avg
I+U 8.2 903 775 83 77.2 83.1

Ace N-I+U 570 722 585 562 51.6 59.1
' [+N-U 79.5 500 499 799 500 619
N-I+N-U | 50.0 50.0 500 500 500 50.0

I+U 711 359 314 11.86 1352 7.84
MAE N-I+U | 20.65 1034 577 3544 28.68 20.18
[+N-U 9.87 186 696 16.21 29.64 16.26
N-I+N-U | 24.03 1986 696 40.47 29.65 24.19
I+U 0.120 0.026 0.030 0.070 0.370 0.123
SAE N-I+U | 0317 0.081 0.365 0.477 0.709 0.390
[+N-U | 0.034 1.000 1.000 0.062 1.000 0.619
N-I+N-U | 1.000 1.000 1.000 1.000 1.000 1.000

Applying both Instance Normalization and U-Net to our model can improve the
performance dramatically.
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Example outputs of Washing Machine on ”unseen’ house 2 from UK-DALE
(We enlarge the right part of the figure to make it clear).
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» \We propose the sequence-to-subsequence learning method, balancing the
convergence difficulty in deep neural networks and the amount of computation
during the inference period.

 Build the model based on conditional GAN.

 With discriminator and L1 loss, our model has the ability to capture the low-
level and high-level information simultaneously.

« The U-Net and instance normalization techniques improve the performance of
our model.
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