cARL DEPARTMENT OF MEDICAL PHYSICS AND ACOUSTICS
OSSIETZKY
universitdt|oOLDENBURG SIGNAL PROCESSING GROUP

DNN-Based Speech Presence Probability Estimation for
Multi-Frame Single-Microphone Speech Enhancement

ICASSP 2020
AUD-L7: Signal Enhancement and Restoration |

Marvin Tammen, Dérte Fischer, Bernd Meyer, Simon Doclo

Department of Medical Physics and Acoustics
Carl von Ossietzky University Oldenburg

May 2020




mowgmum SIGNAL PROCESSING GROUP

@ Problem Statement

© Multi-Frame Filtering
© Parameter Estimation
@ Experiments

© Conclusions & Outlook




mowgmum SIGNAL PROCESSING GROUP

@ Problem Statement

Problem Statement 3



mowgmum SIGNAL PROCESSING GROUP

Problem Statement

Problem Statement 4



o DEPARTMENT OF MEDICAL PHYSICS AND ACOUSTICS
areSIL e LR ENBURE SIGNAL PROCESSING GROUP

Problem Statement

Problem Statement 4



o DEPARTMENT OF MEDICAL PHYSICS AND ACOUSTICS
areSIL e LR ENBURE SIGNAL PROCESSING GROUP

Problem Statement

ly
(2

Problem Statement 4



o DEPARTMENT OF MEDICAL PHYSICS AND ACOUSTICS
areSIL e LR ENBURE SIGNAL PROCESSING GROUP

Problem Statement

ly
(2

Problem Statement 4



o DEPARTMENT OF MEDICAL PHYSICS AND ACOUSTICS
areSIL e LR ENBURE SIGNAL PROCESSING GROUP

Problem Statement

o M)

ly
(2

Problem Statement



o DEPARTMENT OF MEDICAL PHYSICS AND ACOUSTICS
areSIL e LR ENBURE SIGNAL PROCESSING GROUP

Problem Statement

L1 SCOREDRED 2

1,
(2

Problem Statement



DEPARTMENT OF MEDICAL PHYSICS AND ACOUSTICS

mowmaum SIGNAL PROCESSING GROUP

Problem Statement

OG-

real-valued X = vy

speech distortions

masking MeR
multi-frame X =w'y
M2 filtering w,y e c¥  more difficult to estimate
==

Problem Statement



o DEPARTMENT OF MEDICAL PHYSICS AND ACOUSTICS
areSIL e LR ENBURE SIGNAL PROCESSING GROUP

© Multi-Frame Filtering
@ Signal Model & Assumptions
@ Problem & Solution

Multi-Frame Filtering 5



MOLDENBURG SIGNAL PROCESSING GROUP

Signal Model & Assumptions

@ additive noise:
y(k, 1) =x(k, 1) + n(k, )

'Huang and Benesty 2012.

Multi-Frame Filtering



DEPARTMENT OF MEDICAL PHYSICS AND ACOUSTICS

MOLDENBURG SIGNAL PROCESSING GROUP

Signal Model & Assumptions

@ additive noise:
y(k, 1) = x(k, 1) + n(k, )

frequency bin

T —

250 Hz|

time frame

—
4 ms

Figure: multi-frame filtering,
image adapted from Fischer
et al. 2016

'Huang and Benesty 2012.

Multi-Frame Filtering



cARL DEPARTMENT OF MEDICAL PHYSICS AND ACOUSTICS
-l I SIGNAL PROCESSING GROUP
Signal Model & Assumptions

@ additive noise:
y(k, 1) =x(k, 1) + n(k, )
@ independent speech and noise:

—i Oy (1) = E{y(Ny"(1)} = Ox(1) + u(/)

frequency bin

k

250 Hz|

i time frame

—
4 ms

Figure: multi-frame filtering,
image adapted from Fischer
et al. 2016

'Huang and Benesty 2012.

Multi-Frame Filtering 6



cARL DEPARTMENT OF MEDICAL PHYSICS AND ACOUSTICS
-l I SIGNAL PROCESSING GROUP
Signal Model & Assumptions

@ additive noise:
y(k, 1) =x(k, 1) + n(k, )
@ independent speech and noise:

frequency bin

i 0 (1) = £y ()} = Ox(1) + ®4()
© speech has correlated and uncorrelated component!:
ZSOHZI i~ time frame X(/) = ’)’X(/)X(/) + X’(/),
dm —_— ~—~—
correlated  uncorrelated
Figure: multi-frame filtering, E{x(NX*(N} o, (/e
image adapted from Fischer V(1) = N AT )

~(1) : normalized speech interframe correlation vector

'Huang and Benesty 2012.
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Optimization Problem and Solution
@ optimization goals?:

© minimize output power
@ while preserving speech interframe correlations (IFCs)

argmin - w/(Nd,(Nw(l), st. wl(N () =1
w(/)eCN

e ()
@ solved by WMFMPDR(I) = m

— estimate ®y(/), v, (/)

2Huang and Benesty 2012.
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Correlation Matrices

@ noisy: fixed recursive smoothing:

Dy (1) = A\, ®y(/ — 1)+ (1= A )y(Ny" (1) (3)

@ noise: SPP-based adaptive recursive smoothing®:

& (1) = An()®n(/ — 1) + (1 = Aa(N)y(Ny" (1),  where (4)

An(1) = an + (1 — a)SPP()) (5)
_ 0 SPP(/) =0 — An(/) = an, update of ®y,(/)

(i)): SPP(/)=1— A(/) =1, no update of ®,(/)

5Cohen 2003.
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Speech Presence Probability

@ maximum likelihood-based®

6Gerkmann and Hendriks 2012.

Parameter Estimation 11



—on DEPARTMENT OF MEDICAL PHYSICS AND ACOUSTICS
areSIL e LR ENBURE SIGNAL PROCESSING GROUP

Speech Presence Probability

@ maximum likelihood-based®

linear +
sigmoid (33)
linear +
ReLU (513)
linear +
ReLU (513)

forward backward
LSTM (256) LSTM (256)

Teverse time

Y|

@ deep recurrent neural network-based:

6Gerkmann and Hendriks 2012.

Parameter Estimation 11



—on DEPARTMENT OF MEDICAL PHYSICS AND ACOUSTICS
areSIL e LR ENBURE SIGNAL PROCESSING GROUP

Speech Presence Probability

@ maximum likelihood-based®

linear +
sigmoid (33)
linear +
ReLU (513)
linear +
ReLU (513)

forward backward
LSTM (256) LSTM (256)

Teverse time

Y|

@ deep recurrent neural network-based:

o input feature: |Y| € RK*L

6Gerkmann and Hendriks 2012.

Parameter Estimation 11



o DEPARTMENT OF MEDICAL PHYSICS AND ACOUSTICS
areSIL e LR ENBURE SIGNAL PROCESSING GROUP

Speech Presence Probability

@ maximum likelihood-based®

linear +
sigmoid (33)
linear +
ReLU (513)
linear +
ReLU (513)
forward backward
LSTM (256) LSTM (256)

Teverse time

Y|

@ deep recurrent neural network-based:
o input feature: |Y| € RK*L
o sigmoid output to ensure SPP(/) € ]0, 1]

6Gerkmann and Hendriks 2012.

Parameter Estimation 11



DEPARTMENT OF MEDICAL PHYSICS AND ACOUSTICS

mowwaum SIGNAL PROCESSING GROUP

Speech Presence Probability

linear +
sigmoid (33)
linear +
ReLU (513)
linear +
ReLU (513)
forward backward
LSTM (256) LSTM (256)

Y|

@ maximum likelihood-based®
@ deep recurrent neural network-based:
o input feature: |Y| € RK*L
o sigmoid output to ensure SPP(/) € ]0,1[
e trained to minimize MSE loss between
estimated and target SPP®

6Gerkmann and Hendriks 2012.
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Datasets
‘ training validation testing
speech (WSJ0”) | 101 speakers 20 speakers 4 speakers
noise NOISEX928 Aurora®
SNRs / dB [0, 20] {-5,0, ..., 20}

@ disjoint training and testing datasets
@ one DNN is trained for all SNRs

"Paul and Baker 1992.
8Varga and Steeneken 1993.
°Hirsch and Pearce 2000.
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Settings

e STFT and algorithm settings:
e frame length 4 ms, shift length 1 ms, Hann windows
recursive smoothing constants «, 2 50ms, A, 212 ms, Appa s 33 ms
Tikhonov regularization for matrix inversion
filter size N = 18 (correlations within 21 ms can be exploited)
minimum gain -17dB
@ DNN training
e dropout, batch normalization, early stopping
o Adam optimizer

@ evaluation in terms of APESQ
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Conclusions & Outlook

e considered multi-frame single-microphone speech enhancement (SE)
approach

e improved SE performance by replacing conventional ML-based SPP estimator
with DNN-based SPP estimator

o confirmed that multi-frame filtering can be advantageous to single-frame
filtering

@ tight integration of deep learning with filtering

e include filter in training process
e more strongly rely on DNN for parameter estimation

Conclusions & Outlook 18
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Maximum Likelihood-Based SPP Computation

@ assumptions!®:

e complex Gaussian distributions for microphone, speech and noise STFT coefficients
e equal a-priori probability of speech and noise

— derive likelihood under speech presence (#;) and absence (Hg)
o typical SNR under speech presence: &3, = 15dB

@ resulting a-posteriori SPP estimate:

() Rt

(1+ &, )e -0 ©)

SPP(/)= |1+ g(Hl)

Y Gerkmann and Hendriks 2012.
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Wiener Gain Implementation

Wiener Gain R
Input: noisy STFT coefficients Y(k, /), noise PSD estimate ¢,(k, /),
smoothing constant «, minimumAgain Gmin

Output: clean speech estimate X(k, /)

foreach k € [0, K — 1] do

init. X(k,0) = 0;

foreach / € [1,L — 1] do
g(k, N = a% +(1- a)%; /* a-priori SNR estimation */
G(k,I) = max{fé((’k;)l), Gmin}; /* spectral flooring */
X(k,1) = G(k, )Y (k. 1);

end

end
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Tikhonov Regularization

o useful for dealing with multicollinearity in linear regression problems

e obtain Tikhonov-regularized matrix A from A € CN*N as

A:A+%trace{|A|}lN (7)
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