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mmWave massive MU-MIMO uplink
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y ∈ CB BS-receive signals; y = [y1, . . . , yB]T

H ∈ CB×U MIMO channel matrix with B ≥ U
s ∈ SU UE-transmit vector; expected power Es

n ∈ CB noise; i.i.d. zero-mean Gaussian with variance N0

Goal: Estimate transmit data s for each y, given knowledge of H
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Standard approach: Antenna-domain spatial equalization

Spatial equalization removes
inter-UE interference

In massive MU-MIMO systems,
linear spatial equalization is
preferable:

ŝ =Wy with L-MMSE matrix:

W =
(
HHH+ N0

Es
I
)−1
HH
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Larger bandwidth → higher ADC sampling rate → high
power consumption and processing complexity
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Beamspace processing is an alternative
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fast Fourier transform (FFT) across antennas ŷ = Fy

Each FFT output ŷb, b = 1, . . . , B, is
associated with a specific beam

0

30

60

90

120

150

180

-30 -20 -10 0

Perform spatial equalization in beamspace domain ŝ = Ŵŷ
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mmWave channels are sparse in beamspace

beamspace index
1 16 32 48 64 80 96 112 128

m
a

g
n

it
u

d
e

 |
z
|

×10-4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Line-of-sight (LoS) beamspace channel snapshots at 60GHz with mmMAGIC UMi model

Wave propagation at mmWave frequencies is directional

Model for channel vector in antenna space:

h =
∑L−1
`=0 α`a(ω`) with a(ω) = [e j0ω, e j1ω, . . . , e j(B−1)ω]T

Channel vectors are sparse in beamspace ĥu = Fhu, u = 1, . . . , U
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Beamspace sparsity can reduce equalization complexity

Beamspace channel matrix Ĥ = [ĥ1, . . . , ĥU ] is sparse

To avoid multiplications with zeros, beamspace equalization
matrix Ŵ can be sparse as well → reduces complexity

Density coefficient δ ∈ (0, 1] determines fraction of nonzero

entries we want in beamspace equalization matrix: δ = ‖Ŵ‖0

BU

Spatial equalization ŝ = Ŵŷ requires only δBU multiplications
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When is beamspace-domain equalization useful?

Assume that complexity of computing matrix Ŵ is negligible

Complexity: real-valued multiplications per receive vector

Complexity of antenna-domain equalization ŝ =Wy: 4UB

Complexity of beamspace equalization ŝ = ŴFy with δ ∈ (0, 1]:
2B log2(B) + 4UδB

2B log2(B) + 4UδB < 4UB =⇒ δ < 1− log2(B)
2U

Since δ > 0, number of UEs must satisfy U > 1
2 log2(B)

What is the complexity of preprocessing?
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Two architectures that exploit beamspace sparsity

Column-wise equalizer: Matrix Ŵ is column-sparse → select
subset Ω of FFT outputs ŷΩ so that |Ω| = δB
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Column-wise orthogonal matching pursuit (COMP)

Goal: determine optimal support set Ω and equalization matrix
ŴΩ that minimizes post-equalization MSE: E

[
‖ŴΩŷΩ − s‖2

]
Problem is combinatorial → requires search over

(
B
δB

)
sets

We propose a greedy algorithm that finds Ω and computes ŴΩ

Initialize A(1) = I and Ω(1) = ∅ and repeat for k = 1, . . . , δB:

1 Determine index b(k+1) of best column of equalization matrix

b(k+1) = arg max
b′∈{1,...,B}\Ω(k)

‖A(k)hrb′‖2

‖hrb′‖2 + N0/Es

2 Update support set Ω(k+1) = Ω(k) ∪ b(k+1) and compute

Ŵ(k+1) = (HH
Ω(k+1)HΩ(k+1) + ρIU)−1HH

Ω(k+1)

3 Update residual A(k) = I− Ŵ(k)HΩ(k)
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Entry-wise orthogonal matching pursuit (EOMP)

We use a similar greedy algorithm for entry-wise architecture

For each row ŵru of Ŵ perform the following algorithm:

Initialize z(1) = eu and Ω
(1)
u = ∅ and repeat for k = 1, . . . , δB:

1 Determine index b(k+1) of best entry of equalization matrix row

b(k+1) = arg max
b′∈{1,...,B}\Ω(k)

u

|(z(k))Hhrb′ |2
‖hrb′‖2 + ρ

2 Update support set Ω
(k+1)
u = Ω

(k)
u ∪ b(k+1) and compute

ŵ
r(k+1)
u = HΩ(k+1) (HH

Ω(k+1)HΩ(k+1) + ρIU)−1eu

3 Update residual z(k) = eu −HTΩ(k)ŵ
r(k)
u
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Alternative beamspace equalization algorithms

For column-wise methods, we can also use the selection
criterion of COMP of first iteration for all columns:

b = arg max
b′∈{1,...,B}

‖hrb′‖2

‖hrb′‖2 + N0/Es
,

which leads to the largest column (LC) approximation from [1]

For entry-wise methods, we can also use the selection criterion
of EOMP of first iteration for all entries of row:

b = arg max
b′∈{1,...,B}

|eHu hrb′ |2
‖hrb′‖2 + N0/Es

,

which we call the largest-entries (LE) approximation

We can also use the local MMSE algorithm from [2]

[1] M. Mahdavi, O. Edfors, V. Öwall, and L. Liu, “A low complexity massive MIMO detection scheme using
angular-domain processing,” GlobalSIP 2018

[2] M. Abdelghany, U. Madhow, and A. Tölli, “Beamspace Local LMMSE: An efficient digital backend for
mmWave massive MIMO,” IEEE SPAWC 2019
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SNR operating point comparison
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Complexity comparison (including preprocessing)
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Summary and conclusions

mmWave channels offer sparsity in beamspace domain
which can be exploited to reduce equalization complexity

For beamspace-domain equalization to be less complex than
antenna-domain equalization, one needs δ < 1− log2(B)

2U

The number of UEs must satisfy U > 1
2 log2(B)

Entry-wise and column-wise equalizers can reduce complexity

More information → vip.ece.cornell.edu

[1] S. H. Mirfarhsbafan and CS, “Sparse Beamspace Equalization for Massive MU-MIMO mmWave Systems,”
IEEE ICASSP, May 2020
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