Signal Sensing and Reconstruction Paradigms for a Novel Multi-source Static Computed Tomography System

Paper ID: 4080

Authors: Alankar Kotwal, Avilash Cramer, Dufan Wu, Kai Yang, Wolfgang Krull, Ioannis Gkioulekas, Rajiv Gupta

Presenter: Rajiv Gupta, MD, PhD

Carnegie Mellon University Massachusetts Institute of Technology Massachusetts General Hospital Harvard Medical School

ICASSP 2020, Barcelona May 2020

Disclosures

- Govt:
 - IARPA,
 DARPA,
 DoD, FBI,
 NIH, CIMIT
- Industry:
 - Idorsia
 - Siemens

Recreation of first surgery October 16, 1846 Ether Dome

Overview

- The current CT paradigm
- A new CT paradigm
- Projection data acquisition paradigms:
 - Multiplexed, coded acquisition
 - Exposure modulation
 - Adaptive projection acquisition

Current Computed Tomography

A single 100 kW x-ray source on a spinning gantry that weighs ~2 tons and rotates at up to 300 rpm.

Challenges:

- Power
- Weight
- Inertia

https://www.youtube.com/watch?v=TWU-nB4I5dU

Geva, Schechner, Chernyak, Gupta. X-ray CT Through Scatter, ECCV 2008.

Multi-Source Static CT Concept

NICER: Neutron star Interior Composition ExploreR

Prototype X-ray Source Module

Prototype X-ray Source Module

Prototype Module- raw data

Prototype Module- results

A: X-ray projection image of pig lung with an inserted catheter. B: axial slice from pig lung reconstruction. C: segmented bronchial tree from pig lung.

Projection Paradigms

- X-ray on, one at a time, sequentially
- Multiplexed, coded X-ray exposures
- X-ray on, one at a time, sequentially, with modulation
- X-ray on, one at a time, adaptively

Forward Projection Model

Multiplexed Forward Projection Model

Inverse Problem: Multiplexed Forward Projection Model

 $y_{1} = \mathbb{P}[t(P_{1}e^{-\alpha_{1}} + P_{2}e^{-\alpha_{2}})]$ $y_{2} = \mathbb{P}[t(P_{1}e^{-\alpha_{3}} + P_{2}e^{-\alpha_{4}})]$

. . .

Poisson linear combinations are bad!

 $y_1 = \mathbb{P}[tP_1e^{-\alpha_1}]$ $y_2 = \mathbb{P}[tP_1e^{-\alpha_3}]$

. . .

Reconstructions

Original image Bone W/L

Reconstructed mage, Bone W/L Original image, brain W/L

> Reconstructed image, brain

Photon Starvation: Projections by angle

Potential solution: exposure time modulation?

Potential solution: adaptive measurements?

Projection Paradigms

- X-ray on, one at a time, sequentially
 Conventional CT
- Multiplexed, coded X-ray exposures
 > Bad idea; Poisson noise explosion
- X-ray on, one at a time, sequentially, with modulation
 - Good idea
- X-ray on, one at a time, adaptively
 Good idea

