## Signal Sensing and Reconstruction Paradigms for a Novel Multi-source Static Computed Tomography System

Paper ID: 4080

Authors: Alankar Kotwal, Avilash Cramer, Dufan Wu, Kai Yang, Wolfgang Krull, Ioannis Gkioulekas, Rajiv Gupta

Presenter: Rajiv Gupta, MD, PhD
Carnegie Mellon University Massachusetts Institute of Technology Massachusetts General Hospital Harvard Medical School

ICASSP 2020, Barcelona May 2020


## Disclosures

- Govt:
- IARPA, DARPA, DoD, FBI, NIH, CIMIT
- Industry:
- Idorsia
- Siemens


Recreation of first surgery October 16, 1846 Ether Dome

## Overview

- The current CT paradigm
- A new CT paradigm
- Projection data acquisition paradigms:
- Multiplexed, coded acquisition
- Exposure modulation
- Adaptive projection acquisition


## Current Computed Tomography

A single 100 kW x-ray source on a spinning gantry that weighs $\sim 2$ tons and rotates at up to 300 rpm .

Challenges:

- Power
- Weight
- Inertia

https://www.youtube.com/watch?v=TWU-nB4I5dU

Geva, Schechner, Chernyak, Gupta. X-ray CT Through Scatter, ECCV 2008.

## Multi-Source Static CT Concept



(b) Multi-Source Static CT gantry showing the arrangement of X -ray sources and detectors

(c ) MSCT gantry made of 15 X-ray modules

## NICER: Neutron star Interior Composition ExploreR



## X-ray Source Element Design



Metallic
Photocathode


## Prototype X-ray Source Module



## Prototype X-ray Source Module




Prototype Module- raw data


## Prototype Module- results



A: X-ray projection image of pig lung with an inserted catheter. B: axial slice from pig lung reconstruction. C : segmented bronchial tree from pig lung.

## Projection Paradigms

- X-ray on, one at a time, sequentially
- Multiplexed, coded X-ray exposures
- X-ray on, one at a time, sequentially, with modulation
- X-ray on, one at a time, adaptively

Forward Projection Model


## Multiplexed Forward Projection Model



## Inverse Problem: Multiplexed Forward Projection Model



$$
\begin{aligned}
& y_{1}=\mathbb{P}\left[t\left(P_{1} e^{-\alpha_{1}}+P_{2} e^{-\alpha_{2}}\right)\right] \\
& y_{2}=\mathbb{P}\left[t\left(P_{1} e^{-\alpha_{3}}+P_{2} e^{-\alpha_{4}}\right)\right]
\end{aligned}
$$

## Poisson linear combinations are bad!



$$
\begin{aligned}
& y_{1}=\mathbb{P}\left[t P_{1} e^{-\alpha_{1}}\right] \\
& y_{2}=\mathbb{P}\left[t P_{1} e^{-\alpha_{3}}\right]
\end{aligned}
$$

Reconstructions


## Photon Starvation: <br> Projections by angle


$\begin{array}{lllll}D_{1} & D_{2} & D_{3} & D_{4} & D_{5}\end{array}$

## Potential solution: exposure time modulation?



## Potential solution: adaptive measurements?



## Projection Paradigms

- X-ray on, one at a time, sequentially > Conventional CT
- Multiplexed, coded X-ray exposures
> Bad idea; Poisson noise explosion
-X-ray on, one at a time, sequentially, with modulation
> Good idea
- X-ray on, one at a time, adaptively
$>$ Good idea


