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Face Recognition (FR)

Face Recognition are vulnerable to presentation attacks.

Examples of presentation attacks (PA): print attack (left) and 3D
rigid mask attack (right).
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Presentation Attack Detection (PAD)

PAD systems are binary classification systems.
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Presentation Attack Detection (PAD)

Bona Fide Replay PA

Print Mask PA Print PA

PAD systems rely on artifacts present in PAs to detect them.
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PAD Using Deep Learning

CNN
bona fide

attack

CNN based PAD approaches outperform previous methods which use
hand-crafted features123.

1J. Yang, Z. Lei, and S. Z. Li. “Learn Convolutional Neural Network for Face
Anti-Spoofing”. In: arXiv:1408.5601 [cs] (Aug. 2014).

2K. Patel, H. Han, and A. Jain. “Cross-Database Face Antispoofing with Robust
Feature Representation”. In: Chinese Conference on Biometric Recognition. 2016.

3Z. Boulkenafet, J. Komulainen, Z. Akhtar, et al. “A Competition on Generalized
Software-Based Face Presentation Attack Detection in Mobile Scenarios”. In: Proceedings
of the International Joint Conference on Biometrics, 2017. Oct. 2017.
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Problem: Generalization in PAD
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Intra-dataset vs cross-dataset PAD evaluation.
• Cross-dataset evaluations represent real-world scenarios.
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Domain Shift

BF
PA

OULU-NPU

Visualization of learned features of a PAD CNN using t-SNE.
The PAD CNN is trained on the OULU-NPU dataset.
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Domain Shift

BF
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Visualization of learned features of a PAD CNN using t-SNE.
The PAD CNN is trained on the OULU-NPU dataset.
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Domain Shift
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The face images can change drastically between datasets.
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Solution to the problem: Domain Adaptation

• Each dataset can be seen as a domain.
• Domain adaptation/generalization methods can be used to

improve performance.
• A more significant problem is that of data collection in the target

domain.
• Specifically, whereas BF samples may be collected in the target

domain at reasonable cost, collecting PAs in the target domain is
usually much more expensive, if not impossible.

• Also, in real-world scenarios, a PAD system may be presented
with attacks of previously unseen classes of PA.
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Proposed Method: Domain Guided Pruning

• We propose a novel domain adaptation method relying on
minimal information – only BF samples from the target domain.

• We hypothesize that, in a CNN trained for PAD using a source
dataset, some learned filters in a layer are domain specific and
others are domain invariant.

• We assume that by pruning domain specific layers, which do not
generalize to the target dataset, we can improve the performance
of the model on the target dataset.
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Feature Divergence Measure (FDM)

Feature divergence measure (FDM)4 is a way of quantifying domain
shift at a given layer in a CNN.

4X. Pan et al. “Two at Once: Enhancing Learning and Generalization Capacities via
Ibn-Net”. In: Proceedings of the European Conference on Computer Vision (ECCV). 2018.
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Feature Divergence Measure (FDM)

• Given two datasets representing different domains, A and B, we
want to determine, how often, on average, a specific filter in
layer, L, is activated in each domain.

• Denote the average value of a filter over the spatial dimensions
as f and assume a Gaussian distribution for f with mean µ and
variance σ2.

• The symmetric Kullback-Leibler (KL) divergence of this filter
between domains A and B is:

D(fA||fB) = KL(fA||fB) + KL(fB ||fA) (1)

where KL(fA||fB) is the KL divergence.
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Feature Divergence Measure (FDM)

• Let us denote D(fiA||fiB) as the symmetric KL divergence of the
i th filter in layer L.

• Then, the average feature divergence of layer L is given by

D(LA||LB) =
1
C

C∑
i=1

D(fiA||fiB) (2)

where C is the total number of filters in layer L.
• Higher values in Eqn. 1 indicate that the given filter is activated

differently between datasets.
• Thus, the FDM for a given filter indicates whether it sensitive to

the domain shift.
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Proposed Method

1. Compute FDM (Eqn. 1) for each filter F at the layer L using
only bona fide samples of the training set of datasets A and B.

2. Prune N percent of the filters5 of layer L which contribute to the
most feature divergence values at layer L.

3. Re-train the layers L+ 1 and after on the training set of the
source dataset again (not the target dataset since it is assumed
that no PAs are available for training in the target dataset) using
the same classification loss-function to account for the pruned
filters.

The pruned CNN is evaluated on the evaluation set of the target
dataset.

5Pruning can be implemented either by multiplying the output of a filter by zero, or by
removing the filter entirely from calculations to reduce the computational cost. Both
methods result in the same behavior.
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Proposed Method

• Intuitively, this method works like a feature selection method.
• The first L layers following the input layer of the CNN may be

seen as a feature extractor.
• Layers L+ 1 and after may be seen as a classifier.
• Then, by pruning features at layer L and retraining the classifier,

the classifier is limited to use only robust features for prediction.
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Face PAD Datasets

The following four recent PAD datasets have been used in our experiments:

• OULU-NPU6

• Replay-Mobile7
• SWAN8

• WMCA9

OULU-NPU is chosen as the source dataset.

6Z. Boulkenafet, J. Komulainen, L. Li, et al. “OULU-NPU: A Mobile Face
Presentation Attack Database with Real-World Variations”. In: Automatic Face &
Gesture Recognition (FG 2017), 2017 12th IEEE International Conference On. 2017

7A. Costa-Pazo et al. “The REPLAY-MOBILE Face Presentation-Attack Database”.
In: Biometrics Special Interest Group (BIOSIG), 2016 International Conference of The.
2016

8R. Ramachandra et al. “Smartphone Multi-Modal Biometric Authentication:
Database and Evaluation”. In: arXiv:1912.02487 [cs] (Dec. 2019)

9A. George et al. “Biometric Face Presentation Attack Detection with Multi-Channel
Convolutional Neural Network”. In: IEEE Transactions on Information Forensics and
Security (2019)
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Pruning Using Bona fide from Face Recognition Datasets

• The proposed method uses only bona fide samples from the
target dataset.

• Instead of using bona fide samples from a target dataset, we can
use bona fide from a face recognition dataset.

• This allows us to generalize to unknown domains.
• We used 3000 high quality images from IJB-C dataset10 in the

experiments.

10https://www.nist.gov/programs-projects/face-challenges
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Experiments

PAD systems:
• DeepPixBiS11 as a baseline PAD CNN.

• DeepPixBiS is pruned using bona fide data from a target dataset
at layer L and layers L+ 1 and above are re-trained on the source
dataset.

11A. George and S. Marcel. “Deep Pixel-Wise Binary Supervision for Face Presentation
Attack Detection”. In: International Conference on Biometrics. 2019.
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Details of DeepPixBiS

# Layer Details Output Shape Number of Parameters

1
conv0 Conv2D F=7 S=2 112 x 112 x 96 14,496
pool0 MaxPool2D F=3 S=2 56 x 56 x 96 0

2 dense1 Dense Block 56 x 56 x 384 756,288
3 trans1 Transition Block 28 x 28 x 192 75,264
4 dense2 Dense Block 28 x 28 x 768 2,077,056
5 trans2 Transition Block 14 x 14 x 384 297,984
6 dec Conv2D F=1 S=1 14 x 14 x 1 385

F is the number of filters and S is the stride. Layers 1 to 5 are
identical with DenseNet-16112. The input to the network is a
224× 224 pixel color face image.

12G. Huang et al. “Densely Connected Convolutional Networks”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2017.
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Feature Divergences
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Feature divergence at different layers computed between the training set of
OULU-NPU and the evaluation set of OULU-NPU, Replay-Mobile, SWAN,
and WMCA. FDM values are computed per layer (y-axis) and per class (top
row for BF and bottom row for PA).
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Performance Evaluation of the Proposed Method

The models are compared to the baseline when no pruning is performed.
The evaluation-dataset is mentioned on the x axis. The higher the value the
better is the performance of the system.
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Conclusions

• In this work we have formulated the problem of generalization in
PAD systems as a domain adaptation (DA) problem.

• DA methods usually rely on having sufficient data in target
domain

• In biometrics, collecting bona fide samples in target domain is
usually affordable, but not PA data.

• Pruning using the target dataset, increased the performance of
the model on the target dataset.

• Pruning did not degrade the performance of the model on the
source dataset.

Code and models available at: https://gitlab.idiap.ch/bob/
bob.paper.icassp2020_domain_guided_pruning
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