
Improving Cross-dataset Performance of Face
Presentation Attack Detection Systems Using
Face Recognition Datasets
ICASSP 2020
Amir Mohammadi, Sushil Bhattacharjee, Sébastien Marcel

May 8, 2020

http://www.idiap.ch/
http://www.epfl.ch/


Introduction

Related Work

Proposed Method

Experiments

Conclusions

Outline

1. Introduction

2. Related Work

3. Proposed Method

4. Experiments

5. Conclusions

Amir Mohammadi | ICASSP 2020, Improving Cross-dataset Performance of Face PAD 1/26



Introduction

Related Work

Proposed Method

Experiments

Conclusions

Face Recognition (FR)

FR systems are vulnerable to presentation attacks.

Examples of presentation attacks (PA): print attack (left) and 3D
rigid mask attack (right).
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Presentation Attack Detection (PAD)

PAD systems are binary classification systems.
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Presentation Attack Detection (PAD)

Bona Fide Replay PA

Print Mask PA Print PA

PAD systems rely on artifacts present in presentation attacks to
detect them.
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PAD Using Deep Learning

CNN
bona fide

attack

CNN based PAD approaches outperform previous methods which use
hand-crafted features123.

1J. Yang, Z. Lei, and S. Z. Li. “Learn Convolutional Neural Network for Face
Anti-Spoofing”. In: arXiv:1408.5601 [cs] (Aug. 2014).

2K. Patel, H. Han, and A. Jain. “Cross-Database Face Antispoofing with Robust
Feature Representation”. In: Chinese Conference on Biometric Recognition. 2016.

3Z. Boulkenafet, J. Komulainen, Z. Akhtar, et al. “A Competition on Generalized
Software-Based Face Presentation Attack Detection in Mobile Scenarios”. In: Proceedings
of the International Joint Conference on Biometrics, 2017. Oct. 2017.
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Problem: Generalization in PAD
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Intra-dataset vs cross-dataset PAD evaluation.
• Cross-dataset evaluations represent real-world scenarios.
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Domain Shift

BF
PA

OULU-NPU

Visualization of learned features of a PAD CNN using TSNE.
The PAD CNN is trained on the OULU-NPU dataset.
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Domain Shift

BF
PA

OULU-NPU
Replay-Mobile
SWAN
WMCA

Visualization of learned features of a PAD CNN using TSNE.
The PAD CNN is trained on the OULU-NPU dataset.
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Nuisance Factors4
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Domain shift is caused by variations of nuisance factors

4https://en.wikipedia.org/wiki/Nuisance_variable
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Nuisance Factors
Nuisance factors include:
• camera device
• distance of the subject from the camera
• instrument used to create the attack
• lighting conditions
• identity, pose, etc.

Current face PAD datasets contain limited variations of nuisance
factors.

• Less than 10 camera devices
• 50 to 150 identities
• Limited variations in lighting conditions and pose
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Related Work: Domain Generalization Methods
Most methods account for domain shift by learning features that are
domain invariant:

Classification
loss

Input
Domain 1

Input
Domain 2

Input
Domain N

MMD loss

Adversarial loss

Feature
extractor

Classifier

Distribution
matching

Neural networks

Diagram of a typical domain generalization method.

MMD: Maximum Mean Discrepancy5
5A. Gretton et al. “A Kernel Two-Sample Test”. In: Journal of Machine Learning

Research 13.Mar (2012).
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Related Work

What is a domain?

1. Each camera device is a domain and MMD is used6.

2. Each PAD dataset is a domain and an adversarial loss is used7.

6H. Li et al. “Learning Generalized Deep Feature Representation for Face
Anti-Spoofing”. In: IEEE Transactions on Information Forensics and Security 13.10 (Oct.
2018).

7R. Shao et al. “Multi-Adversarial Discriminative Deep Domain Generalization for Face
Presentation Attack Detection”. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). June 2019.
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Related Work

Downsides of most domain generalization methods:

• Domain needs to be defined.
• Data from each domain is needed.
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Proposed Method: Motivation

How can we account for nuisance factors?

Some nuisance factors are common between bona fide and
presentation attacks, such as:
• identities
• camera devices
• lighting conditions

Some nuisance factors are specific to presentation attacks, such as:
• presentation attack instruments
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Nuisance Factors

Current face PAD datasets contain limited variations of nuisance
factors.
• Less than 10 camera devices
• 50 to 150 identities
• Limited variations in lighting conditions and pose

Face recognition datasets contain large variations of many of those
nuisance factors.
• Hundreds of different camera devices
• More than 100,000 identities
• Faces captured in the wild with a variety of lighting conditions

and pose
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Proposed Method

Hypothesis

All the underlying factors that explain the data in a face recognition
dataset (which contains only bona fide samples) are nuisance factors
in a face PAD system.

• Face PAD datasets contain limited variations of nuisance factors.
• Face recognition datasets are much larger and more varied and

can help us model the common nuisance factors.
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Proposed Method

Assume: I = f(y, z1, z2) + ε

• I is a face image.
• f is a function.
• y is the variable that we want to predict – whether I is a PA.
• z1 is the variable that represents nuisance factors common

between two classes.
• z2 is the variable that represents nuisance factors exclusive to

presentation attacks.
• ε is noise.
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Proposed Method

Assume: f(y, z1, z2) = g(z1) + h(y, z2)

• g and h are functions that produce images given their respective
latent variables.

Assume: z1 = e(I),
Iz1 = g(z1) = g(e(I)),

h(y, z2) u I− Iz1 = Iy ,z2

• e and g are the functions that we want to model.
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Proposed Method Using Deep Autoencoders

Encoder
(e)

Decoder
(g)

z
1

Autoencoders can model the factors present in data.
• Using a face recognition dataset to train an autoencoder allows

us to accurately model z1 nuisance factors.
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Proposed Method Using Deep Autoencoders

PAD
CNN

Encoder
(e) -

I

z
1

Decoder
(g)

I
z1

I
y, z2

• The proposed method adds a pre-processing step to traditional
methods.

Iz1 = g(z1) = g(e(I))
h(y, z2) u I− Iz1 = Iy ,z2
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Autoencoder Details

• InfoVAE (a variational autoencoder) was used in the experiments.
• Encoder: DenseNet-1618

• Decoder: 7 layer deep CNN9

• Dimension of z1: 256
• Prior distribution: N (0, 3) (diagonal covariance matrix)
• Face recognition datasets: cleaned versions of Microsoft Celeb

(MS-Celeb-1M)10 and the Celeb-A11

8G. Huang et al. “Densely Connected Convolutional Networks”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2017.

9T. Miyato et al. “Spectral Normalization for Generative Adversarial Networks”. In:
International Conference on Learning Representations. 2018.

10Y. Guo et al. “MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face
Recognition”. In: arXiv preprint arXiv:1607.08221 (2016).

11Z. Liu et al. “Deep Learning Face Attributes in the Wild”. In: Proceedings of
International Conference on Computer Vision (ICCV). Dec. 2015.
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Experiments

Evaluation of 3 PAD systems:
• DeepPixBiS12 as a baseline PAD CNN.

• Autoencoder Error (AE, proposed method) based on DeepPixBiS.

PAD
CNN

Encoder
(e) -

I

z
1

Decoder
(g)

I
z1

I
y, z2

• Blur Error (BE) – Similar to AE but a Gaussian blur filter is used
instead of an autoencoder.
◦ IBE = I− Iblurred

12A. George and S. Marcel. “Deep Pixel-Wise Binary Supervision for Face Presentation
Attack Detection”. In: International Conference on Biometrics. 2019.
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Input images of different systems

Original Autoencoder Blurred
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Datasets

Experiments are done using 4 recent face PAD datasets

• OULU-NPU13

• Replay-Mobile14
• SWAN15

• WMCA16

All PAD methods are trained on OULU-NPU and tested on all datasets.

13Z. Boulkenafet, J. Komulainen, L. Li, et al. “OULU-NPU: A Mobile Face
Presentation Attack Database with Real-World Variations”. In: Automatic Face &
Gesture Recognition (FG 2017), 2017 12th IEEE International Conference On. 2017

14A. Costa-Pazo et al. “The REPLAY-MOBILE Face Presentation-Attack Database”.
In: Biometrics Special Interest Group (BIOSIG), 2016 International Conference of The.
2016

15R. Ramachandra et al. “Smartphone Multi-Modal Biometric Authentication:
Database and Evaluation”. In: arXiv:1912.02487 [cs] (Dec. 2019)

16A. George et al. “Biometric Face Presentation Attack Detection with Multi-Channel
Convolutional Neural Network”. In: IEEE Transactions on Information Forensics and
Security (2019)
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Intra-dataset and Cross-dataset Evaluations

• Area under the curve (AUC) of the ROC plots is reported.
• Comparison of intra-dataset (OULU-NPU) versus cross-dataset

(Replay-Mobile, SWAN, WMCA) evaluations.
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Conclusions

• All the factors present in face recognition datasets can be seen as
nuisance factors for face PAD.

• Autoencoders can be used to explicitly model these nuisance
factors.

The proposed method:
• Decreased the intra-dataset performance.
• Increased the cross-dataset performance.

Code and models available at: https://gitlab.idiap.ch/bob/
bob.paper.icassp2020_facepad_generalization_infovae
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