

Video-driven Speech Reconstruction using Generative Adversarial Networks Show & Tell Demo

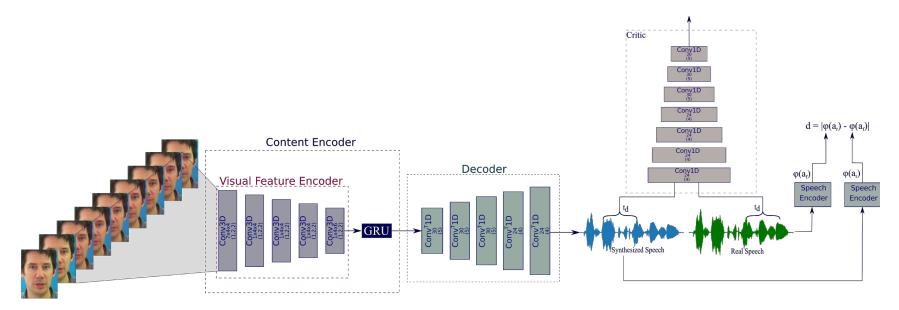
Rodrigo Mira¹, Pingchuan Ma¹, Konstantinos Vougioukas¹, Stavros Petridis^{1,2}, Björn Schuller^{1,3}, Maja Pantic^{1,2}

¹Imperial College London ²Samsung AI Centre Cambridge ³ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany

Introduction

- In this presentation we will demonstrate our end-to-end speech reconstruction model on silent videos of unseen live speakers.
- This model is an extension of the one presented in Vougioukas et al. (2019)¹.
- We will be focusing on the **practical details** of the model and subsequently on applying it to live speakers.

¹ K. Vougioukas, P. Ma, S. Petridis, and M. Pantic "Video-Driven Speech Reconstruction using Generative Adversarial Networks" Interspeech 2019


Motivation

- Lipreading is a well developed technique which allows us to transcribe speech from video automatically when the corresponding audio is absent or noisy.
- Video-to-speech generates audio directly from video, which has 3 main advantages:
 - Can potentially be applied in **real time** with no delays.
 - Can potentially translate the **emotion and intonation** present in speech.
 - Does not require transcribed datasets for training.

SAMSUNG

Original Model (Interspeech 2019)

Original Model (Interspeech 2019)

- First deep learning model to generate waveform speech from silent video end-to-end.
- Features convolutional **encoder-decoder** model which encodes video into compact meaningful features which are then decoded into 16 kHz audio.
- Uses a waveform critic which discriminates real from fake samples in order to generate more realistic results.

SAMSUNG

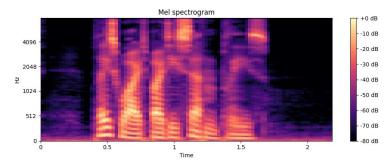
Original Model (Interspeech 2019)

- The model is trained using **4 separate losses**:
 - Adversarial loss, based on *I. Gulrajani et al.* (2017)¹.
 - L1 Loss between the real and synthesized waveforms.
 - Total Variation Loss for the synthesized waveform.
 - Perceptual Loss, an L1 Loss between the features extracted from the real and synthesized audio. The features are extracted using a pre-trained speech encoder based on *K. Vougioukas et al. (2018)*².

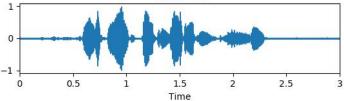
¹Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville "Improved Training of Wasserstein GANs" NeurIPS 2017 ²Konstantinos Vougioukas, Stavros Petridis, and Maja Pantic "End-to-End Speech-Driven Facial Animation with Temporal GANs" British Machine Vision Conference 2018.

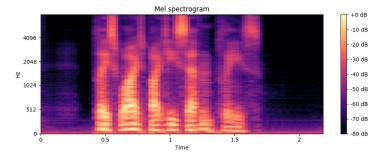
Rodrigo Mira et al.

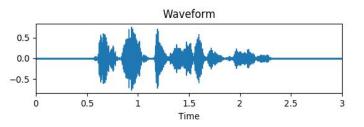
Seen Speaker Speech Reconstruction (GRID)



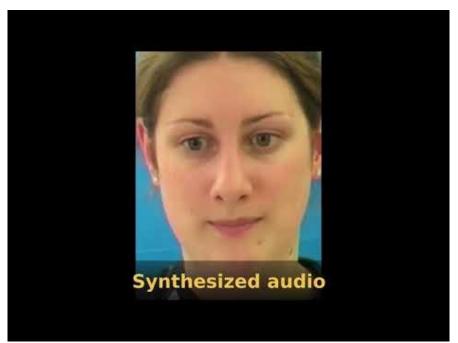
Rodrigo Mira et al.


SAMSUNG


Spectrogram/Waveform Comparison (GRID, seen speakers)



Real


Synthesized

Rodrigo Mira et al.

Unseen Speaker Speech Reconstruction (GRID)

Rodrigo Mira et al.

SAMSUNG

Unseen Speaker Speech Reconstruction in the Wild (LRW)

Rodrigo Mira et al.

SAMSUNG

Demo (Step 1)

- Record video and convert it to 25 frames per second.
- Perform face detection and alignment on each frame using *Dlib*'s 68-landmark model.
- Align each frame to a reference mean face shape.
- Crop mouth ROI (Region of Interest) on each frame using a fixed 74x150 bounding box.
- Compile frames into cropped video.

Original frame

SAMSUNG

Demo (Step 2)


- Feed the video into our **model** (excluding the critic).
- Save a video featuring the old uncropped video and the new reconstructed audio, and display it.
- On an average CPU, the entire process takes around **40 seconds** for a 3 second video.
- Excluding pre-processing and post-processing, on a high end machine with an RTX 2080 TI, generating the waveform takes around 1 second.

SAMSUNG

Simulated Live Demo

Rodrigo Mira et al.

SAMSUNG

More Live Samples

Rodrigo Mira et al.

Conclusion

- Thank you for watching our demo.
- We have shown that **intelligible speech reconstruction** is possible for live unseen speakers.
- In the future, we hope to find a way to capture the voice of new speakers efficiently, to create realistic voiced speech for live unseen speakers.
- The samples shown here can be found under <u>https://sites.google.com/view/speech-synthesis/home/extension</u>