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Background

Background

5is(M) = @— f;—)T@ff ~ 1)

 Mahalanobis distance [1]. f; ¢ R [ Metricmatrix

Feature vector
for sample i

« Metric learning: find M € R*** that minimizes a chosen objective
function Q(M) subjectto M > 0.
/

convex and differentiable

Positive definite (PD)

[1] P. C. Mahalanobis, “On the generalized distance in statistics,” Proceedings of the National Institute of Sciences of India, vol. 2, no. 1, pp. 49— 2 / 1 4
55, April 1936.
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Related works

* PD cone: Gradient descent / projection[2].

Step size

Mt ::(Mt— vVQ(M?))

computation- {1) eigen-decomposition of M.

» optimizing diagonal entries only [3]

s 0
m,,
My

» expensive
projection

2) soft-thresholding of eigenvalues.

« Sparse / Low-rank based methods [4].

> simply excludes the full-rank M with only positive diagonal entries.

» (Why full-rank?)

» incorporates the diagonal-only [3] case.

Degrade the metric quality due to
restricted search spaces.

e % [2] E. P. Xing, A. Y. Ng, M. 1. Jordan and S. Russell, “Distance metric learning, with application to clustering with side-information,” NIPS’02.
ICASSP [31J. Zhang and L. Zhang, “Efficient stochastic optimization for low-rank distance metric learning,” in AAAI Feb. 2017, pp. 933-939. 3 / 1 4
0.

Bancelona [4] C. Yang, G. Cheung, and V. Stankovic, “Alternating binary classifier and graph learning from partial labels,” in APSIPA, Nov. 2018, pp. 1137-114
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Contributions

_ _ 1) Projection-free.
* A metric learning framework.

2) For a genera| QM) —— Convex and differentiable

> Step 1: DefineM € @\’ general g]agh Laplacian matrices search space.

self-loops: relative importance among K features.

edge weights: pairwise feature correlations.

» Step 2: Rewrite the PD cone constraint M = 0 as signal-adaptive
linear constraints via Gershgorin disc alignment [5].

1) Diagonal terms.

» Step 3: optimize M { @ as LP’s via Frank-Wolfe Iterations.
D 2) Off-diagonal terms.

[5] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, and W. Gao, “Fast graph sampling set selection using Gershgorin disc alignment,” to appear IEEE
TSP, 2020.
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Preliminaries
 Anundirected graph. G ={V, E W

~ weighted adjacency matrix
A node (feature) set of cardinality‘V‘ — K

edge set

each edge (2,7) € Ehasa weight similarity between i and j

» Generalized graph Laplacian.
L, =D — W + diag(W)

-

degree matrix d; ; = )" | w; ;
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Related QL o Graph metric

Graph metric learning
* Graph metric matrix M.

/ /1) positive edge weights m; ; < 0,7 # j

generalized graph Laplacian { 2)

3

* [rreducible graph [6]

positive node degrees

- -
.

miqi > 0

may have self-loops|with wi,i > — > ., wi,;

— any node can commute with any other node.

o
X T
art'atap)
A
AR
. 2“ 2 o

Bareelona 6] M. Milgram, “Irreducible graphs,” Journal Of Combinatorial Theory (B), vol. 12, pp. 6-31, Feb. 1972..
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Related QL o Graph metric

Graph metric learning (cont’d)
Problem formulation.

e FINndM € S.

halanobis_distﬁnce
ype equation here.

s.t. tr(M) <C——C >0

avoid the trace of M
being infinity.

convex and differentiable function
- . g 0o . - -
e InitializeM". mi; =C/K 1 001 0 0

0 B @/ .0.01 1 -001 O
M jlj=it1 "= 0 -001 1 -0.01

0 .
ngjlj#'lj:l - 0 L 0 O '0.01 1 o
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Graph metric learning (cont’d)
» Optimization of diagonal terms. / Gershgorin Circle Theorem (GCT) [7] \

min (M)
{mi i} Each eigenvalue )\ of \

s.t. (M = 0; Z mii < C; mi; >0, Vi resides in at least one Gershgorin disc U ;
i
GCT

| qjl radius: 7i = Zj|j;&i i ;|
. _centre: ¢; = m;;
miagz Z |mi,j|+pa ViE{l,...,K} :/J X

Tz p >0 Linear constraints ) .

A
v

Search space is much smallerthan M >~ 0O !!

> 9 Amin
g o \ Jf{él
Barcelona [7] R. S. Varga, Gershgorin and his circles. Springer, 2004.
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Graph metric learning (cont’d)
« Optimization of diagonal terms. / . e \

» Examine Gershgorin discs of >
B = SMS !, § = diag(s1,...,5K) -

— _—

— l/vk

0 7 0o =
First eigenvector @é M [8]. )\é /\
IT1in min

B has the Sameiige”"a'“es asM. Theorem: these exist scalars s1, .. ., sk
same smallest Gershgorin disc’s left-end. | such t_hat all Gershgorin disc left-ends
@ aligned at the same value \.,;,. /

9/14
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Barcelona [8] C. Yang, G. Cheung, and W. Hu, “Graph Metric Learning via Gershgorin Disc Alignment,” arXiv, 2020.
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Graph metric learning (cont’d)
» Optimization of diagonal terms.

min M
min  Q(M) Gershgorin- {m;, }Q( )

{mi i}
| based m.:
s.t. M > 0; Zmi,i n O PRI VAR o formulation s.t. My 2> Si Z .| + p, Vi, Zmz i < C
) Jli#i %

* Frank-Wolfe algorithm by = min vec({mi.})" vQ(M’)

; {mi i}
Computlng VQ(Mt) mt |
W.rI.1 {mij%—}_ s.t. my > sy Z +p, Vi megc

53
jli#e
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Related QL o Graph metric

Graph metric learning (cont’d)
* Optimization of off-diagonal entries.

* Block coordinate descent.
« Ensure irreducibility (the graph remains connected).
M, - |:> 1{1/11;11 Q(M
Va2 |
s.t. mi; > si Z ;3 +p, V1

 Frank-Wolfe a|g0rithm by itz 5 At least one off-diagonal term in
Computlng VQ( ) column | has magnitude at least € > 0

mi

M =
[M2 1

positive edge weights

The index of previously optimized M5 ;
with the largest magnitude 11/14
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Results
* QObjective @™M): Graph Laplacian regularizer (GLR) [9].

graph signal Node palrs
N N
QM) =z' L(M ,
1= 13 1
N N Edge weight
:ZZEXP{ ) M(f, — )}(zi—Zj)Q_

i=1 7=1

« Small GLR:
- signal z at connected similar pairs (z:, z5) has a large w;.; .
- z IS smooth w.r.t the variation operator L(M).

[9] J. Pang and G. Cheung, “Graph Laplacian regularization for image denoising: Analysis in the continuous domain,” IEEE Transactions on Image 12 / 1 4
Processing, vol. 26, no. 4, pp. 1770-1785, April 2017.
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Results (cont’d)

» Evaluate performance in classification tasks.

* Datasets:
1) iris (3 classes,4 features and 150 samples).
2) wine (3 classes, 13 features and 178 samples).
3) seeds (3 classes, 7 features and 210 samples).

« Competing schemes:

1) learning the diagonal terms only: ICML’03 [10], APSIPA’16 [11], APSIPA’18 [12].
2) learning the full metric matrix: ICML’16 [13], TSP’20 [14].

[10] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using Gaussian fields and harmonic functions,” in ICML, Aug. 2003, pp. 912-919.

[11] Y. Mao, G. Cheung, C.-W. Lin, and Y. Ji, “Joint learning of similarity graph and image classifier from partial labels,” in APSIPA, Dec. 2016, pp. 1-4.

[12] C. Yang, G. Cheung, and V. Stankovic, “Alternating binary classifier and graph learning from partial labels,” in APSIPA, Nov. 2018, pp. 1137-1140.

[13] P. Zadeh, R. Hosseini, and S. Sra, “Geometric mean metric learning,” in ICML, June 2016, pp. 2464-2471. 13/14
[14] W. Hu, X. Gao, G. Cheung, and Z. Guo, “Feature graph learning for 3d point cloud denoising,” to apper, IEEE TSP, 2020.
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Results (cont’d)

Methods Graph- Graph- Graph-

kNN based A based A based
_ ICML’03 [10] 4.61 441 3.84 4.88 7.30 7.20
D'i?ﬁ;‘a" avsPAlo[11] 4,97 4,57 4.61 5.18 7.15 6.93
APSIPA’18 [12] 5.45 5.49 4.35 4.96 7.78 7.40
ICML’16 [13] 6.12 10.40 3.58 4.37 6.92 6.63
Full seoma 4.35 4.80 4.12 4.36 7.77 7.47

matrix

Prop. 4.35 412 4.27 4.19 7.10 6.61

7K [10] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using Gaussian fields and harmonic functions,” in [CML, Aug. 2003, pp. 912-919.

{ () [11] Y. Mao, G. Cheung, C.-W. Lin, and Y. Ji, “Joint learning of similarity graph and image classifier from partial labels,” in APSIPA, Dec. 2016, pp. 1-4.

W02 [12] C. Yang, G. Cheung, and V. Stankovic, “Alternating binary classifier and graph learning from partial labels,” in APSIPA, Nov. 2018, pp. 1137-1140.
ICASSP [13] P. Zadeh, R. Hosseini, and S. Sra, “Geometric mean metric learning,” in ICML, June 2016, pp. 2464-2471. 14/14
X Bancelona [14] W. Hu, X. Gao, G. Cheung, and Z. Guo, “Feature graph learning for 3d point cloud denoising,” to apper, IEEE TSP, 2020.
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