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Future wireless systems will use various technologies

Millimeter-wave
(mmWave) [1]

More bandwidth

6 GHz 24 GHz 100 GHz

100 MHz 2 GHz800 MHz

52.6 GHz

Massive MU-MIMO [2]

Equip the basestation (BS) with
hundreds or thousands of antennas B
High array gain compensates for
mmWave path-loss

Fine-grained beamforming allows to
serve tens of user equipments (UEs) U

[1] A. L. Swindlehurst, E. Ayaoglu, P. Heydari, and F. Capolino, “Millimeter-wave Massive MIMO: The Next
Wireless revolution?,” IEEE Commun. Mag., Sep. 2014

[2] T. L. Marzetta, “Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas,” IEEE
T-WCOM, Nov. 2010vip
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All-digital basestations are desirable in practice
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All digital: Each antenna has
a pair of ADCs/DACs

Maximum flexibility for
beam- and null-forming

Simplified synchronization,
channel estimation, beam
finding and tracking,
equalization, and precoding

Minimal radio-frequency
(RF) circuit design effort

Inexpensive testing and
technology migrationvip
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Past research focused on low-resolution ADCs/DACs

All-digital mmWave massive MU-MIMO BSs may entail excessive
interconnect, system costs, and power consumption

Lower resolution → lower power consumption
Power of ADCs/DACs scales exponentially with number of bits

Lower resolution → lower hardware complexity
Remaining RF circuitry (amplifiers, filters, etc.) needs to
operate at precision "just above" the quantization noise floor

Extreme case of 1-bit data converters enables the use of
high-efficiency, low-power, and nonlinear RF circuitry

Lower resolution → lower raw data rates from/to converters

Our focus: Not ADCs/DACs, but
low-resolution baseband processingvip
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We study the massive MU-MIMO OFDM uplink
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Spatial
equalizer

Per-subcarrier uplink channel model: y = Hs+ n

y ∈ CB BS-receive signals; y = [y1, . . . , yB]T

H ∈ CB×U (known) MIMO channel matrix; tall: B � U

s ∈ SU UE-transmit vector; expected power Es
n ∈ CB noise; i.i.d. zero-mean Gaussian with variance N0

Goal: Recover transmit data s given knowledge of H and yvip
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Baseband processing: An implementation bottleneck!

Spatial equalization:

Collect power from individual UEs

Suppress inter-UE interference

Map B data streams to U layers

Spatial equalization must be
performed at ADC sampling rate
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To minimize complexity and power, we focus on linear spatial
equalization: s̄ =WHy

Linear spatial equalization of a single tap for a 256 BS array @ 1GHz
bandwidth requires at least 27mm2 and 21W in 28nm CMOS [1]

Area and power results when using 10b for WH and 7b for y
[1] O. Castañeda, S. Jacobsson, G. Durisi, T. Goldstein, and C. Studer, “High-Bandwidth Spatial Equalization for

mmWave Massive MU-MIMO with Processing-In-Memory,” to be presented at IEEE ISCAS 2020vip
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What can we do? Finite-alphabet equalization

Only reducing precision of ADCs is not enough!

Multiplication of m bit and n bit number in hardware [1]

Area = O(nm) and Delay = O(log(max{m, n}))

Power consumption roughly proportional to area

Idea: Reduce precision of spatial equalization matrix WH

Naïve approach: Compute L-MMSE WH = (HHH+ ρIU)−1HH

and quantize rows of WH to {−βu,+βu} with optimal βu

Multiplication with matrix that has 1-bit entries only requires
additions and subtractions!

[1] R. Zimmermann, “Computer Arithmetic: Principles, Architectures, and VLSI Design,” Technical Report,
Integrated Systems Laboratory, ETH Zurich, 1999vip
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Quantized L-MMSE bit error-rate performance
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Inf. prec. L-MMSE
1-bit QL-MMSE

B=256 BS antennas, U=16 UEs, 16-QAM, mmMAGIC NLoS,
60 GHz, R=3/4, OFDM, ±3 dB per-user power control

1-bit quantized L-MMSE results in significant performance lossvip
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Let’s do it right!

Main goal: Design matrices that minimize MSE and
enable hardware-efficient VLSI implementations

Finite-alphabet matrix

VH = diag(β∗)XH

Low-resolution matrix XH ∈ XU×B,
e.g., X ={±1± j}

Post-equalization scaling β∗ ∈ CU
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Hardware-friendly per-UE biased spatial equalization

s̄u[k ] = β∗ux
H
u y, u = 1, . . . , U

Inner products xHu y[k ] can be implemented with simple hardware

Only scaling with βu is carried out at higher precisionvip
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FAME: Finite-Alphabet MMSE Equalizer

Goal: Find vector β and matrix XH that minimize MSE{
β,XH

}
= arg min
β̃∈CU ,X̃H∈XU×B

Es,n
[
‖diag(β̃∗)X̃Hy − s‖22

]
Problem can be formulated per UE u = 1, 2, . . . , U

{βu, xu} = arg min
β∈C,x̃∈XB

‖eu −HHβ̃x̃‖2 + ρ‖β̃x̃‖2, ρ = N0/Es

FAME can be solved in two steps:

xu = arg min
x̃∈XB

‖HHx̃‖22 + ρ‖x̃‖22
|hHu x̃|2

βu(xu) =
xHu hu

‖HHxu‖22 + ρ‖xu‖22

Optimization problem is NP-hard: Exhaustive search for 1-bit
with B = 256 requires 10154 evaluations of objective functionvip
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Solving FAME in practice [1]

We need fast, even if approximate, algorithms to solve:

xu = arg min
x̃∈XB

‖HHx̃‖22 + ρ‖x̃‖22
|hHu x̃|2

Finite-alphabet L-MMSE (FL-MMSE)
Quantize each L-MMSE matrix row using uniform-width bins

FAME via forward-backward splitting (FBS)
Iterative procedure to approximately solve the FAME problem

FL-MMSE and FAME-FBS have both the
same complexity scaling O(((BU222))) as L-MMSE

[1] O. Castañeda, S. Jacobsson, G. Durisi, T. Goldstein, and C. Studer, “Finite-Alphabet MMSE Equalization for
All-Digital mmWave Massive MU-MIMO,” to appear in IEEE J-SACvip
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Unbiased finite-alphabet equalization

Per-UE biased equalization with the L-MMSE WH

s̄u = wHu y = wHu husu +wHu ñu

where ñu =
∑U
i=1,i 6=u hisi + n is noise-plus-interference (NPI)

In general for the L-MMSE equalizer, wHu hu 6= 1

An unbiased estimate can be computed as

ŝu =
s̄u
wHu hu

= su +
wHu ñu
wHu hu

Unbiased finite-alphabet equalization remains hardware-friendly:

ŝu =
β∗ux

H
u y

β∗ux
H
u hu

=
xHu y

xHu huvip
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Generating soft-output for finite-alphabet equalization

We find the NPI variance:

ν2u = Es,n
[
|ŝu − su|2

]
= Es

(
(βu(xu)hHu xu)−1 − 1

)
We compute LLR values by assuming that the residual error
ŝu − su is circularly-symmetric Gaussian with variance ν2u [1]:

Λu,q = log
(∑

s∈S(1)q
exp
(
− |ŝu−s|

2

ν2u

))
− log

(∑
s∈S(0)q

exp
(
− |ŝu−s|

2

ν2u

))
,

where S(1)q and S(0)q are the subsets of the constellation S in
which the qth bit is 1 and 0, respectively.

Computing soft-outputs for finite-alphabet equalizers entails the
same complexity as for traditional L-MMSE

[1] C. Studer, S. Fateh, and D. Seethaler, “ASIC implementation of soft-input soft-output MIMO detection using
MMSE parallel interference cancellation,” IEEE J-SSC, Jul. 2011vip

.ec
e.c
or
ne
ll.e
du



FAME offers competitive error-rate performance
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B=256 BS antennas, U=16 UEs, 16-QAM, mmMAGIC NLoS,
60 GHz, R=3/4, OFDM, ±3 dB per-user power control

Finite-alphabet equalization also supports multi-bit quantizationvip
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Summary and conclusions

Operation at extreme mmWave bandwidths results in
high silicon area and power consumption

Novel paradigm that offers significant area and power savings
compared to conventional baseband processing

3 Finite-alphabet matrices enable the use of low-precision
hardware while minimizing performance loss

3 Approach also provides unbiased estimates with soft-outputs

3 Hardware results for matrix-vector product demonstrate savings
in area and power of up to 555.888××× and 333.999×××, respectively [1]

More information → vip.ece.cornell.edu

[1] O. Castañeda, S. Jacobsson, G. Durisi, T. Goldstein, and C. Studer, “Finite-Alphabet MMSE Equalization for
All-Digital mmWave Massive MU-MIMO,” to appear in IEEE J-SACvip
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