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Introduction

Robust Optimization of Wireless Networks

Wireless channels have inherent uncertainty. Deterministic
optimizations do not capture the realistic wireless environment.

State-of-art robust optimization algorithms use statistical models to
incorporate uncertainties into the solutions.

However, this classic approach relies on ad-hoc mathematical models,
which are hard to obtain and might not be truly accurate. Further,
the parameters of these models are often difficult to estimate.

This paper proposes to use machine learning (ML) to learn robust
solutions from the uncertainty samples, effectively providing a more
direct representation of the uncertainties.
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Introduction

Link Power Control in Device-to-Device Networks
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Introduction

Robust Sum Rate Maximization

For given instantaneous channel realizations and a set of power
control decisions {xi}, the achievable rate of each link is:

Ri = W log
(

1 + giipixi
Γ(
∑
j 6=i gijpjxj + σ2)

)
, (1)

Path-loss components can be accurately obtained.
But, shadowing and fast-fading may be harder to measure. In this
work, they are regarded as channel uncertainty.

Goal: Design a centralized controller to perform robust power control
based only on path-loss as inputs, but robust to shadowing/fast-fading.
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Introduction

Notion of Robustness

We adopt the concept of outage capacity for ensuring robustness on
each individual link, then optimize robust sum rate over the network.

Given a fixed outage probability γ, the robust rate R̂i is:

Pr[Ri < R̂i] ≤ γ, ∀i (2)

The robust sum-rate optimization problem formulation:

maximize
x

N∑
i=1

R̂i (3a)

subject to 0 ≤ xi ≤ 1, ∀i. (3b)
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Main Idea

Learn Robust Solutions from Uncertainty Samples

Accurate uncertainty models are typically difficult to obtain.

Instead, we aim to learn robust power control strategy from
uncertainty samples of the channels.

While uncertainty is hard to measure for online applications,
uncertainty samples can be easily collected for offline use.

We design novel neural network model in which the uncertainty
samples can be injected into the unsupervised training process.

The deep neural network architecture is highly flexible. It directly
learns the mapping from the path-loss input to the robust sum rate.
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Approach

Novel Neural Network with Uncertainty Injection
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Uncertainty samples are injected at the last training stage only.
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Approach

Neural Network Architecture Details

The neural network is fully-connected, with 3 hidden layers.

Each hidden layer has 4N2 units (where N is the number of D2D
links), each with ReLu non-linearity.

The output layer for power control decisions has N units, each with
Sigmoid non-linearity for its desired range, corresponding to xi.
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Approach

Robust Optimization via Unsupervised Learning

Unsupervised learning is crucial for uncertainty injection training,
avoiding the effort for obtaining targets for each channel.

For each power control output {xi}, we compute the robust sum-rate
objective, then perform gradient-ascent to improve model parameters.

Computation of each user’s instantaneous rate requires full CSI.

We inject many samples of the channel realization to obtain an
empirical approximation of the γ-percentile rate.
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Approach

Gradient-Ascent over Injected Samples

Despite the complexity of the actual uncertainty distribution, injecting
samples doesn’t change the differentiability of the mapping.

The prevalent gradient-based training is readily adaptable on our
neural network structure.

Denote the collective neural network parameters as W , and the set of
CSI corresponding to the γ-percentile rate Rγi under {xi} as {gi}.

The gradient of the robust sum-rate with respect to the neural
network parameters is just

∑N
i=1

∂Rγi
∂W , where different sets of {gi}’s

are involved in different links.
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Simulation

Wireless Network Model

Full frequency reuse with 5MHz bandwidth at 2.4GHz carrier
frequency; 1.5m antenna height and 2.5dB antenna gain.

Additive white Gaussian noise at -169dBm/Hz

SNR gap at 6dB

Max transmit power is set to be constant across each link at 40dBm

Short-range outdoor model ITU-1411 distance-dependent pathloss
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Simulation

Simulation Settings

To validate the generalization ability of our method, we provide the
simulation results for two settings with different parameters.

Table: Wireless Environment

Setting Number
of Links

Region Area
(m2)

Direct-Link
Distance Distribution

A 20 1500× 1500 10m∼40m
B 20 2000× 2000 5m∼70m

1000 testing wireless networks are generated under each setting.
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Simulation

Robust Sum Rate

We set γ = 5% as the tolerable outage probability for all links. The
corresponding evaluation results are as follows:

Table: Robust Sum-Rate Performance

A B
Fractional Programming 104.2Mbps 149.6Mbps
Deep Learning without
Uncertainties Injection 112.9Mbps 155.2Mbps

Deep Learning with
Uncertainties Injection 127.7Mbps 188.1Mbps

Percentage Improvement 13% 21%
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Simulation

Cumulative Distribution of Robust Sum Rate
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Figure: Cumulative distribution of robust sum-rates.
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Discussion and Conclusion

Rates Visualization
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Figure: Robust rate for each link in a wireless network.
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Discussion and Conclusion

Robust Power Control Strategy

By visualizing the 5%-outage rate, we can see that the neural network
has learned to more heavily utilize the stronger links and to
de-emphasize the weaker links.

By giving up the weaker links, it reduces the number of non-zero
interference terms in SINR expressions.

These terms are subject to channel uncertainty fluctuations and can
be detrimental to the sum-rate under unfavorable channel conditions.

An additional benefit: our model achieves the performance with much
less power (39.55% in Setting A and 48.79% in Setting B of
FPLinQ’s average allocated power), thus also being power-efficient.
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Discussion and Conclusion

Conclusion

We propose a novel neural network architecture for robust power
control, trained via uncertainty samples injection.

Based only on path-loss inputs, our model achieves satisfying
sum-rate results against uncertain shadowing and fast-fading.

Key features of the robust sum-rate maximization framework:
Incorporating uncertainty only through its samples, thus being
compatible with arbitrary uncertainty distributions.
Highly flexible to different optimization objective formulations.
Using unsupervised learning to avoid costly target preparation.
Learning novel yet interpretable power allocation strategy.
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