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Introcluction

@ Spontaneous conversations such as meetings, debates,
and telephone conversations tend to contain overlapping
speech, i.e., time segments where more than one
speaker is active.

@ Applications affected by overlapping speech:

Digital hearing aids %ﬁ' E[/(wi/)"”’ii@

Automatic Speech
Recognition (ASR) h !I
Speaker verification,

identification
and recognition

¥ Mobile voice
telecommunication
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os Cocktail party problem

@ Cocktail party problem is a psychoacoustic phenomena; refers to ability of
human auditory system to selectively attend, recognize and extract
meaningful information from complex auditory signals in noisy environments,
where interference is from competing talkers
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T ekl Challenges

@ Researchers have addressed co-channel speech challenge
using two major approaches:

1) Detecting overlap speech segments & removing from the dataset

Results in building better speaker-specific models for speaker

diarization/recognition

2) Detecting overlap speech segments & separating individual speech
signals out of the mixture

Results in better performance in identifying active speakers and

recognizing their associated speech content
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Previous approaches

€ Unsupervised:

These approaches typically use signal processing methods to design suitable
features for detecting overlapping segments.

1. Spectral Auto-correlation Peak Valley Ratio (SAPVR).
2. Measuring the Gaussianity of speech segment using Kurtosis
3. Zero crossing
4
5

. Spectral flow
. Harmonicity

@ Supervised:

Supervised approaches use model-based techniques to learn representations
for both single speaker & overlapping speech segments

1. Non-negative Matrix Factorization (NMF)
2. Long Short Term Memory (LSTM) Networks
3. Convolutional Neural Networks (CNNs)
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Prolem reormulation

@ Overlapping speech dataset generated considering two scenarios:

1. Entire utterance contains Speech 1 th -
overlapping speech. Speech 2
wM"* w«h

2. Utterance contains both
overlapping & clean speech.

4 Drawbacks of manually
designed features: 41011'* ’nfwﬂm}w Wiﬁ L

1.May not be best representation for [ Mixing Process J
modeling competing talker; could I
lead to sub-optimal results. length mixture ¢

Maximum
length mixture

2.Can be fragile in noisy
conditions.
*W »r' W’«r
casseijzo - |45
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5] Spectral Features

@ Feature extraction for classifier training:
@ 256-dim spectral magnitude:

257-dim feature vector calculated using a 512-dim (STFT) computed over a
25 ms Hamming window with 10 ms of frame shift.
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@ 40-dim Mel Filter Banks (MFB)

Calculated by applying the 40 Mel-scale filter banks to the power spectrum
of the speech signal.

Single talker Overlapping speech
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Speciral features

#39-dim Mel Frequency Cepstral Coefficients (MFCCs)

Calculating Mel FilterBank, then logarithm of filter bank energies derived;
Discrete Cosine Transform (DCT) is then applied.

Single talker

Overlapping speech
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@ 120-dim Pyknogram:
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Pyknogram enhances speech spectrogram by performing AM-FM (Amplitude-
Frequency Modulation) analysis; this decomposes speech spectral sub-bands

into amplitude & frequency components.

Overlapplng speech

Slngle talker
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) Classifier

DIGIRISIS

@ Convolutional Neural Network:

@ Classical approaches to problem involve hand crafting features from time
series data; difficulty is that this uses fixed-sized windows.

@ This feature engineering requires deep expertise in the field.

@ Convolutional Neural Network (CNN) is the foundation of many supervised
solutions for problems such as computer vision

4 Convolutional operation:

@ A “filter”, sometimes called a “kernel”, is passed over
the feature vector, viewing a few samples at a time.
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Proposed Architecture

@ Proposed design: Decision unit
4 1-D Convolutional layer: s,gm_o,d
Convolution using a ‘kernel’ to extract S
certain ‘features’ from the input. %‘%‘3 Zi, O 0O O
TES O 0O O
@ Tanh activation function: N
- Tanh
Activation layer introduces non-linearity to
.. » 1-D convolutional layer
allow network to train itself 5
@ Fully connected layer: ‘_g"_{ )
Used to reduce the dimensions of the g .
extracted features by the CNN §
Tanh
@ Sigmoid activation function: =
1-D convolutional layer

Generating the probability of each class for —
the data samples W
+ o |
I ASSP@ Input Layer
Email: {Midia.Yousefi, John.Hansen}@utdallas.edu IEEE ICASSP 2020, Barcelona, Spain, May !-!, 5!!!




Sxperimental setup

< Dataset:

@ Naturalistic data, like AMI corpus has been used to evaluate systems for
overlapping speech detection.

@® AMI dataset contains only 5-10% overlapping speech; not sufficient for
training DNNs.

We generate overlapping speech
based on the GRID corpus.

@ The GRID corpus:

@ A multi-speaker, sentence-based corpus.
@ Contains 34 speakers, 18 males and 16 females each narrating 1000
sentences.

The generated Development Test

SUELRPNE 20hrs 3hrs
speech dataset
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ekl Model training

@ Model training and experiments:

6 1-D convolutional layer

Kernel size of 3

128 output channel

200 epoch, batch size 32
Learning rate 0.001, reduced by
0.5 if no improvement in
validation loss for 3 successive
epochs.

1. Number of layers
2. Kernel size

3. Channel size

4. Learning rate

6.50E-01

1.
@ Hyper-parameters tuning: :23
4,
5.

= tr_loss = cv_loss

o [\T raining & validation loss
depicts ability of the

450801 network to generalize to
unseen speech

3.50E-01 segments in the

development phase.

2.50E-01
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Sxperimental Results

Precision: correctly detected overlapping segments vs. the total number of
overlapping segments:

Recall: ability of model to find all overlapping segments in dataset; measured as
ratio of correctly detected overlap segments to total number of actual overlapping.
Fscore: defined as harmonic mean of recall & precision.

Time: processing time per epoch for each experiment is also captured.

Considering classification Male-Male | MagSpec | Pykno | MFB
measures & time efficiency, Accuracy 79% 82% | 78%
MFCC outperforms other Precision 80% 849 81%
features Recall 00% 01% 01%

Fscore 85% 87 Y% 86%

Time 898s 530s 247s

Female-Female Pykno | MFB | MFCC
Accuracy 849 82% 83%
Precision 86% 849 85%

Recall 01% | 91% 91%
Fscore 88% 86% 88%

dﬂ Time 536s 250s 216s
ICASSP£020
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Sxperimental results

Male-Female | MagSpec | Pykno | MFB | MFCC
ROC & Precision-Recall Accuracy 88% 89% 89% 89%
curves based on MFCC Precision 91% 92% 92% 92%
feature derived from Recall 1% N% | 92% | 91%
male-male data test-set. f'i Fscore % | 92% | 92% | 92%
Time 033s 510s | 230s 217s
Receiver operating characteristic (ROC) Precision_Recall Curve
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SN Discussion and conclusions

DIGIRISIS

4 Conclusions on proposed overlapping speech detection system:

@ A CNN architecture was introduced to classify overlapping speech on frames as
short 25 ms.

@ Proposed CNN architecture was trained using 4 spectral features:
Spectral magnitude, MFB, MFCC, Pyknogram.
Accuracy for spectral magnitude is 79% for male-male dataset.

Fscore of male-male dataset is 85%; generally a good performance for
classification; however precision is 80%, which is 10% lower than recall (90%).

Magnitude spectra is a dense feature; processing time is high in each epoch.

Second largest feature is Pyknogram; outperforms spectrogram in both
classification metrics & processing time; not computationally efficient compared
to 39-dim MFCC and 40-dim MFB.

Pyknograms & MFCC have competitive classification performance, while
MFCC is a lower dimensional feature & reduces processing time by 60%.
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