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The model

Consider the recovery of a random signal x from a set of linear 
measurements

Where
•

•

•

•

And we consider the compressed sensing scenario                   with both 
of a similar order
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Inference via Bayes-motivated approach: EP
Assume we can form the posterior for x given measurements y

which can be represented with a factor graph (FG)

On this FG, we employ EP with isotropic Gaussian approximations:
• p(y|x) is approximated by

• p(x) is approximated by 
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Expectation Propagation updates
On that simple factor graph, the EP update rules are

Where the proj[ ] operator is the KL projection on the family of 
Gaussian distributions with isotropic covariance matrices

Note that the updates are carried out only in terms of moments: the 
mean and the variance.
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EP-based algorithm

If one derives these update rules, one can get the following algorithm
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Other works

An equivalent form of EP, called Vector Approximate Message Passing 
(VAMP), was first proposed by Rangan et al [1]. Shortly after a similar 
result was presented by Takeuchi [2].

Both of these works studied the dynamics of EP for the considered 
problem under the assumption that in the SVD of

the singular vector matrix V is Haar distributed, while U and S can be 
any.
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Implementation of Block B

Thus gB acts as a denoiser with measurements

The scalar        is the divergence of the denoiser

The function       produces an estimate of the MSE

These components were well studied in [4], [5], [6], [7]
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Properties of Block A

It was shown that that the mean           of the approximated density         
is equal to

The function gA is the LMMSE estimator 
• Directly compute the inverse – very slow
• Use SVD – requires storing large matrices; intractable amount of memory

The scalar       is the divergence of 
• The same problems as with gA

The Block A is intractable when the dimensions of the system are large 
as in many imaging problems. Alternatives?
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Conjugate Gradient (CG) approximation

Use a few iterations of CG to approximate the LMMSE

What about the divergence of the resulting            and the MSE            ?

Takeuchi and Wen shown [3] that under Haar V this divergence can be 
estimated for i iterations of CG if one has access to 2i + 2 moments of 
the singular spectrum of S

What if we don’t have the access to those moments?
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The divergence of CG

In [3] it was shown that shown that as                 and with Haar V, the CG 
function becomes a linear mapping

of the vector zt and the diagonal matrix         is a function of S,        and 

only.

The from the definition of          we can show that

which is independent of a particular realization of w and qt but is only a 
function of its statistics 10



Estimating the divergence of CG

Since the divergence is independent of a particular realization of w and 
qt but is only a function of its statistics, synthesize

with 

Execute CG on the synthesized data. We expect

to be close to the result with the real data. Use           as an estimate of
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Efficient estimator of MSE 

We still need to compute the MSE 

Using the definition of             and of          , one can show that is it equal 
to

All the components are available
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State Evolution of CG-VAMP

It can be shown that the exact solution to

gives the optimal performance of VAMP w.r.t. the choice of 

When we use CG, we sacrifice both convergence rate and the quality 
of the fixed point of VAMP

In order to preserve the efficiency and the quality, we adaptively 
choose the number of CG iterations and iterate while

for some constant c<1 that is larger than for the exact 
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Simulation results of adaptive CG for VAMP
• x is Bernoulli-Gaussian signal
• N = 214, M = 213

• geometric singular values
• condition number 10 000
• SNR = 40dB
• constant c=0.9 for the variance reduction
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Conclusions
• This work has presented efficient on-the-fly estimation of the variance and 

divergence terms for CG-VAMP using the concept of a synthetic statistical 
system

• This implementation does not rely on any prior information about the 
singular values of A

• We have presented an adaptive implementation of CG-VAMP in order to 
ensure a good convergence rate

• Simulations (not shown) based on Fast ill-conditioned Johnson-
Lindenstrauss operators result in both fast and accurate reconstruction
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