Retiming and Dual-supply Voltage Based Energy Optimization for DSP Applications

Teng Xu, and Miodrag Potkonjak

University of California, Los Angeles

41st International Conference on Acoustics, Speech, and Signal Processing

Background

DSP Applications

Video Compression Audio S

Audio Signal Processing

Image Processing

- Hardware Implemented DSP Applications
 - ASIC
 - FPGA
- Constraints
 - Cost, Size, Latency, Energy
 - Among all constraints, energy becomes especially important

Circuit Energy Optimization

- Dual supply voltages (dual-vdd)
 - Assign two supply voltages to a circuit
 - Gates with high voltage drive gates with low voltage
 - Flip-flops are set to high voltage

Circuit Energy Optimization

- Retiming
 - Change circuit structure, e.g., position of flip-flops
 - Circuit functionality is not altered
 - Reduce circuit delay

Objective

- Retime circuit to facilitate dual-vdd optimization
 - Conventional retiming is not designed for dual-vdd
 - Minimize the number of flip-flops: fewer gates on high voltage
 - Not compromise the delay of circuit

Circuit Modeling

- Delay and power models from Markovic et al. [1]
- Delay Model

$$D = \frac{k_{tp} \cdot C_L \cdot V_{dd}}{2 \cdot n \cdot \mu \cdot C_{ox} \cdot \frac{W}{L} \cdot (\frac{kT}{q})^2} \cdot \frac{k_{fit}}{(\ln(e^{\frac{(1+\sigma)V_{dd} - V_{th}}{2 \cdot n \ cdot(kT/q)}}))^2}$$

$$C_L = C_{ox} \cdot L \cdot (\gamma \cdot W + W_{fanout})$$

- Power Model
 - Leakage Power
 - Switching Power

$$P_{leakage} = 2 \cdot n \cdot \mu \cdot C_{ox} \cdot \frac{W}{L} \cdot (\frac{kT}{q})^2 \cdot V_{dd} \cdot e^{\frac{\sigma \cdot V_{dd} - V_{th}}{n \cdot (kT/q)}}$$

$$P_{switching} = \alpha \cdot C_L \cdot V_{dd}^2 \cdot f$$

[1] D. Markoví c, C. C. Wang, L. P. Alarcon, T.-T. Liu, and J. M. Rabaey, "Ultralow-power design in near-threshold region," Proceedings of the IEEE, vol. 98, no. 2, pp. 237–252, 2010.

Retime For Minimal Flip-flops

- Apply minimal-cut on circuit
- Assign flip-flops on the minimal cut
- Only assign flip-flops that will not compromise circuit delay

```
Algorithm 1 Retiming for minimum flip-flops (RTMF)
Input: C_0 - original circuit.
Input: CP_0 - critical path on C_0.
Input: FF_0 - flip-flops on C_0.
FF_{fix} is a vector that contains all the flip-flops that are fixed.
  FF_{fix} = \emptyset
  do
       for all ff_i in FF_0
          if ff_i is in CP_0
              FF_{fix}.append(ff_i)
          end if
       end for
       C_{pre} = C_0
       (C_0, CP_0, FF_0) = Mincut((C_0, CP_0, FF_0 - FF_{fix}))
  while CP_0! = CP_{pre}
  Output: C_0
```

Dual Voltage Optimization

• Two key issues

- What voltages should be used?
- Which part of the circuit should be assigned to high/low voltage?

Results

Experimental Set up

- ISPD2012 cell library
- Initial supply voltage: 0.7V
- Initial threshold voltage: 0.3V
- Energy reduction: 28.18% to 39.27%
- Experimental Results

Circuit	Target Delay	Initial Energy	Supply Voltage(s) (V)			Energy Savings (% compared to initial)	
	(ns)	(mJ)	Scaled (after RTMF)	$(V_{min},$	V_{max})	RTMF	RTMF+DV
FFT-64	47.35	38.75	0.57V	0.53V	0.64V	34.57 %	45.08%
FFT-128	47.35	153.15	0.55V	0.52V	0.61V	39.27 %	56.06%
DCT-8x8	59.83	117.3	0.56V	0.52V	0.63V	35.38 %	65.1%
DCT-16x16	55.39	2988.18	0.59V	0.56V	0.68V	28.18 %	39.58%
Average	-	-	-	-	-	34.35 %	51.46 %