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A View of Recent Unsupervised Speech
Representation Learning Approaches

July, 2018
DeepMind

April, 2019
MIT

CPC

Phone / Speaker

APC

Phone / Speaker

Common heuristic:

[1] Representation Learning with Contrastive
Predictive Coding

[2] An Unsupervised Autoregressive Model for Speech
Representation Learning

They both encode past information and predict
information about future frames.
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Pre-Training Task: Masked Acoustic Model
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Pre- Trammg Task: Masked Acoustlc Model
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Probabilistic Policy for Masking Frames

JBEEE-— BUEME
1) 0 0

Mask all 15%

prediction (highlighted in green).

/2) For all selected frames: \ \l ' ' . '

. Replace all 15%

"/o
[1) Select 15% of the frames for ]

e mask to zero 80% of the time

e replace randomly 10% of the time

\0 leave untouch 10% of the time /




Probabilistic Policy for Masking Frames
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Input Feature: Masked Spectrogram
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Migrating from text to speech

Acoustic Features: long and locally smooth in nature,

need to 1) shorten the sequence and 2) mask over a longer span

Address the long and smooth problem with:
Downsampling, and consecutive masking R=3, C=3
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Incorporating with Downstream Tasks

1) Feature Extraction
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Incorporating with Downstream Tasks
2) Weighted Sum from All Layers (WS)

Trained with little paired data
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Experiments

We report results on 3 different downstream tasks:
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e Speaker Recognition

e Sentiment Classification on spoken content
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[3] Multimodal language analysis in the wild: CMU-MOSEI

Expe ri me nts dataset and interpretable dynamic fusion graph

We report results on 3 different downstream tasks:

e Phoneme Classification (72 classes):

Train: LibriSpeech 360 / Test: LibriSpeech test-clean
O 00 3 3 8 8

s [HONNN oo [ [~

e Speaker Recognition (63 classes):
Train: 90% of LibriSpeech 100 / Test: 10% of LibriSpeech 100

e Sentiment Classification on spoken content (2 classes):
To demonstrate domain invariant transferability, we use another dataset: MOSEI [3]
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Experiments - 1/3

Acoustic Features

Phoneme Classification

Speaker Recognition

Sentiment Classification

Mel Features 49 1 70.1 64.6
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Consistent results over all three tasks:
Mel < BASE < LARGE




Acoustic Features

Experiments - 2/3

Phoneme Classification

Speaker Recognition

Sentiment Classification

Mel Features 491 70.1 64.6
BASE 60.9 94.5 67.4
LARGE 64.3 96.3 70.1
LARGE-WS 69.9 96.4 711

Consistent results over all three tasks:

LARGE < LARGE-WS




Experiments - 3/3

Acoustic Features Phoneme Classification Speaker Recognition Sentiment Classification
Mel Features 491 70.1 64.6
BASE 60.9 94.5 67.4
LARGE 64.3 96.3 70.1
LARGE-WS 69.9 96.4 711
BASE-FT2 84.3 98.1 68.5
APC [2] 741 85.9 66.0

[2] An Unsupervised Autoregressive Model for Speech Representation Learning



Low-Resource Experiments - 1/6
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44.9 417

35.2 Mel-feature

8 Phone accuracy (test-clean, %) S

Amount of labeled data (train-clean-360, hr)
360 45 18 3.6 1.8 0.36

We demonstrate how pre-training on speech can improve supervised
training in low resource scenarios, we train with reduced amount of labels.
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Low-Resource Experiments - 3/6

8 Phone accuracy (test-clean, %) S

64.3
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Amount of labeled data (train-clean-360, hr)
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Low-Resource Experiments - 4/6

35.2 Mel-feature

Amount of labeled data (train-clean-360, hr)
360 45 18 3.6 1.8 0.36

8 Phone accuracy (test-clean, %) 8

LARGE < LARGE-WS
with an avg 5.75% improvement




Low-Resource Experiments - 4/6
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8 Phone accuracy (test-clean, %) S

Amount of labeled data (train-clean-360, hr)
45 18 3.6 1.8 0.36
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With 0.1% of labels,
LARGE-WS (52.8%) outperformed Mel (49.1%) that uses all 100% hours of labeled data.




Low-Resource Experiments - 5/6
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Low-Resource Experiments - 5/6
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With 0.1% of labels,
BASE-FT2 (57.9%) outperformed Mel (49.1%) that uses all 100% hours of labeled data.




Low-Resource Experiments - 6/6

0 ©955.2+ BASE-FT500

57.9 BASE-FT2

$52.8 LARGE-WS
~46.6 LARGE

45.1 BASE

35.2 Mel-feature

Amount of labeled data (train-clean-360, hr) ~ 266 APC
360 45 18 3.6 1.8 0.36

APC works well on full resource but fails to generalize for limited labeled data.



Conclusion

— We conclude that unsupervised Mockingjay ____
improves supervised training!




Links

This slide (with speaker notes) can be found here:
https://bit.ly/icassp2020-mockingjay

Our code and implementation can be found here:
https://github.com/andi611/Mockingjay-Speech-Representation
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