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Introduction

• Recently, deep neural networks (DNN) have been widely applied to 
capture speaker characteristics and produce speaker embedding as 
speaker representation in speaker verification (SV) tasks.
• Bottleneck feature, d-vector, x-vector, and so on.

• Most SV systems are based on x-vector features.
• The architecture consists of two feature transformations.

• Frame-level feature transformation

• Segment-level feature transformation
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Introduction

• Many studies are focused on improving performance for speaker 
verification by adding various layers or considering the contributions 
from different models.
• Attention mechanism

• Model-level fusion

• This paper aims to improve speaker embedding representation based 
on x-vector for extracting more detailed information.
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Related Work

• The x-vector embedding with PLDA classifier is 
the SOTA system for speaker verification.

• In the TDNN, given a subsequence of 𝐹 output 
vectors 𝐻𝑝

𝑙−1 = {ℎ𝑝,1
𝑙−1, ℎ𝑝,2

𝑙−1, … , ℎ𝑝,𝐹
𝑙−1} from the 

previous 𝑙 − 1 th layer at time step 𝑝

where 𝑊𝑙 ∈ ℝ𝐷𝑙×𝑄𝑙
is the weight matrix of size 𝐷𝑙 × 𝑄𝑙, 𝐷𝑙 is the 

number of output nodes and 𝑄𝑙 is the number of input nodes; 𝑏𝑙 is the 
bias vector in layer 𝑙 and 𝛼 ∙ is the activation function.

ℎ𝑝
𝑙 = 𝛼 𝑊𝑙𝐻𝑝

𝑙−1 + 𝑏𝑙 (1)
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Problems

• As the TDNN layer focuses on local feature extraction
• High-level feature extraction through non-linear transformations with low 

weights in preceding layers may lose some important information using low-
level features.

• In real-world environment applications, sometimes there are multi-
speakers talking at the same time.
• The embeddings extracted from multi-speaker recordings will cause the 

confusion of speaker characteristics and decrease the recognition 
performance.
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Goals

• This study integrates TDNN with the statistics pooling to exploit the 
potential of the network by considering the variation of temporal 
context.
• To improve the ability of x-vector learning by capturing more robust speaker 

characteristics.

• To reduce the interference from other speakers in the recordings.
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Frame-Level Statistics Pooling TDNN

• We directly combine 𝐻𝑝
𝑙−1 and statistics pooling 

result of 𝐻𝑝
𝑙−1 to form a new input feature vector, 

which is then fed into the next layer

 ℎ𝑝
𝑙 = 𝛼 𝑊𝑙 𝐻𝑝

𝑙−1 ⊕ 𝑠𝑡𝑎𝑡 𝐻𝑝
𝑙−1 + 𝑏𝑙 (2)

where ⨁ denotes a concatenation operation, 𝑠𝑡𝑎𝑡 ∙ is the statistics 
pooling function that computes the mean and standard deviation.
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Frame-Level Statistics Pooling TDNN

• Assuming that the input is stationary speech, each output vector is 
similar to the other output vectors. The transformation can thus be 
simplified as follows.

 𝐻𝑝
𝑙−1 = { ℎ𝑝,1

𝑙−1,  ℎ𝑝,2
𝑙−1, … ,  ℎ𝑝,𝐹

𝑙−1} (3)
 𝐻𝑙−1 = { 𝐻1

𝑙−1,  𝐻2
𝑙−1, … ,  𝐻𝑃

𝑙−1} (4)
 ℎ𝑝
𝑙 ≈ 𝛼 𝑊𝑙 𝐸  𝐻𝑙−1 ⊕𝑚𝑒𝑎𝑛 𝐸  𝐻𝑙−1 ⊕ 𝑠𝑡𝑑 𝐸  𝐻𝑙−1 + 𝑏𝑙

≈ 𝛼 𝑊𝑙  𝐻𝑝
𝑙−1 ⊕  ℎ𝑝,𝑓

𝑙−1 ⊕ 𝑠𝑡𝑑  𝐻𝑝
𝑙−1 + 𝑏𝑙 (5)

where  𝐻𝑙−1 is a set of subsequences corresponding to 𝑃 time steps obtained from the previous 𝑙 − 1 th layer, 
𝑚𝑒𝑎𝑛(∙) is the mean function and 𝑠𝑡𝑑(∙) is the standard deviation function.
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𝐸  𝐻𝑙−1 =  𝐻1
𝑙−1 =  𝐻2

𝑙−1 = ⋯ =  𝐻𝑃
𝑙−1

𝑠𝑡𝑑 ∙ = [0,0, … , 0]

𝑚𝑒𝑎𝑛 𝐸  𝐻𝑙−1 =  ℎ𝑝,1
𝑙−1 =  ℎ𝑝,2

𝑙−1 = ⋯ =  ℎ𝑝,𝐹
𝑙−1

≈ 𝛼 𝑊𝑙  𝐻𝑝
𝑙−1 + 𝑏𝑙 = ℎ𝑝

𝑙
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Datasets

• Training data:
• VoxCeleb2 dataset

• The DEV set contained 1,092,009 utterances from 5,994 celebrities, which were obtained 
from YouTube videos.

• Testing data:
• VoxCeleb1 dataset 

• The dataset contained 153,516 utterances from 1,251 celebrities, which was also 
obtained from YouTube videos.

• The Speakers in the Wild (SITW) dataset
• The EVAL dataset provides 2,883 recordings from 180 speakers, which contained multi-

speaker presentations in the same utterances. 
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Experimental Setup

• Input features
• 40-dimentional Mel-frequency cepstral coefficients (MFCCs)

• the spectrogram is extracted from a 25ms window with a stride of 10ms.

• In the following results
• “x-vector” refers to baseline system using x-vector

• “stats-vector” refers to the system using the proposed feature representation

• “fusion” refers to the score fusion method

𝑠𝑐𝑜𝑟𝑒𝐹𝑖 =
1

𝐾
 

𝑘=1

𝐾

𝑠𝑐𝑜𝑟𝑒𝑖(𝑘) −
1

𝑆
 

𝑠=1

𝑆

𝑠𝑐𝑜𝑟𝑒𝑠(𝑘) +
1

𝐾𝑆
 

𝑘=1

𝐾

 

𝑠=1

𝑆

𝑠𝑐𝑜𝑟𝑒𝑠(𝑘)

(6)

where 𝐾 is the number of speaker verification systems, 𝑆 is the number of embedding pairs, and 𝑠𝑐𝑜𝑟𝑒𝐹𝑖 is the 
𝑖-th score that was determined by the average score of each system and total average score of all systems. 11
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Experimental Results

• Evaluation on VoxCeleb1

Compared to the baseline x-vector system, the stats-vector system performed better 
by 6.0%, 1.7% and 1.3% in EER, respectively.

Using score fusion significantly improved the performances
>> VoxCeleb1 (cleaned): improved by 15.4% in EER and 11.6% in DCF10−2.
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Experimental Results

• Evaluation on SITW

The stats-vector obtained the best performance on EVAL assist-multi trial list, 
outperforming by 4.8% in EER and 3.5% in DCF10−2. 
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Experimental Results

DET curve for the trial pairs in VoxCeleb1 (cleaned) DET curve for the trial pairs in SITW EVAL assist-multi
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Experimental Results

• In this study, compared to the baseline x-vector system
• Evaluation on VoxCeleb1

• EER (in VoxCeleb1 (cleaned)): 3.50% -> 3.29%

• Evaluation on SITW
• EER (in EVAL assist-multi): 9.22% -> 8.78%

• The proposed stats-vector system can significantly improve the 
speaker verification performance by considering the variation of 
temporal context in frame-level TDNN.
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Conclusions

• This paper proposes a statistics pooling TDNN architecture (named as 
stats-vector) for speaker verification.

• The TDNN structure integrates statistics pooling for each layer, to consider the 
variation of temporal context in frame-level transformation.

• Compared to the x-vector architecture, this study only changed three layers in 
the frame-level transformation which could improve the performance of 
speaker verification.
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Future Work

• Recently, statistics pooling replaced by attention mechanism has been 
proven that providing different speaker discriminative information of 
frames can achieve better performance.

• In the future, we will investigate the potential of attention mechanisms, to 
further consider the different characteristics and improve the performance.
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Thank you for your attention
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