

Statistics Pooling Time Delay Neural Network Based on X-vector for Speaker Verification

Qian-Bei Hong¹, Chung-Hsien Wu^{1,2}, Hsin-Min Wang¹, and Chien-Lin Huang³

 ¹Graduate Program of Multimedia Systems and Intelligent Computing, National Cheng Kung University and Academia Sinica, Tainan, Taiwan
 ²Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
 ³PingAn Al Lab, Palo Alto, CA 94306, USA

Outline

- Introduction
- Related Work
- Frame-Level Statistics Pooling TDNN
- Experimental Results
- Conclusions

Introduction

- Recently, deep neural networks (DNN) have been widely applied to capture speaker characteristics and produce speaker embedding as speaker representation in speaker verification (SV) tasks.
 - Bottleneck feature, d-vector, x-vector, and so on.
- Most SV systems are based on x-vector features.
 - The architecture consists of two feature transformations.
 - Frame-level feature transformation
 - Segment-level feature transformation

Introduction

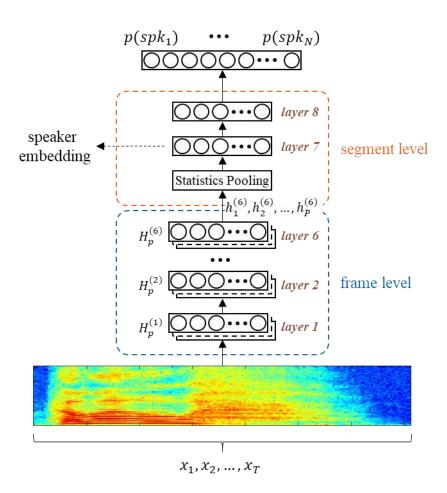
- Many studies are focused on improving performance for speaker verification by adding various layers or considering the contributions from different models.
 - Attention mechanism
 - Model-level fusion
- This paper aims to improve speaker embedding representation based on x-vector for extracting more detailed information.

Related Work

- The x-vector embedding with PLDA classifier is the SOTA system for speaker verification.
- In the TDNN, given a subsequence of F output vectors $H_p^{l-1} = \{h_{p,1}^{l-1}, h_{p,2}^{l-1}, \dots, h_{p,F}^{l-1}\}$ from the previous (l-1)th layer at time step p

$$h_p^l = \alpha \left(W^l H_p^{l-1} + b^l \right) \tag{1}$$

where $W^l \in \mathbb{R}^{D^l \times Q^l}$ is the weight matrix of size $D^l \times Q^l$, D^l is the number of output nodes and Q^l is the number of input nodes; b^l is the bias vector in layer l and $\alpha(\cdot)$ is the activation function.



Problems

- As the TDNN layer focuses on local feature extraction
 - High-level feature extraction through non-linear transformations with low weights in preceding layers may lose some important information using low-level features.
- In real-world environment applications, sometimes there are multispeakers talking at the same time.
 - The embeddings extracted from multi-speaker recordings will cause the confusion of speaker characteristics and decrease the recognition performance.

Goals

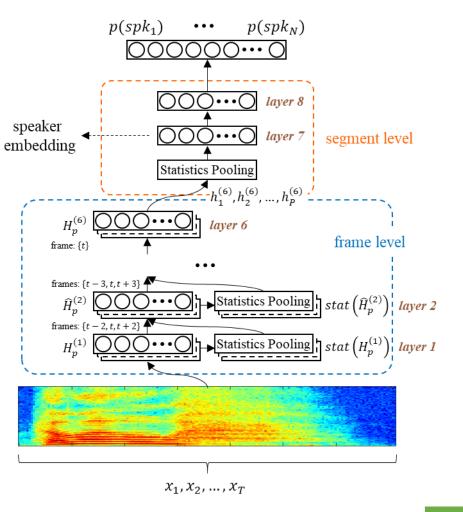
- This study integrates TDNN with the statistics pooling to exploit the potential of the network by considering the variation of temporal context.
 - To improve the ability of x-vector learning by capturing more robust speaker characteristics.
 - To reduce the interference from other speakers in the recordings.

Frame-Level Statistics Pooling TDNN

• We directly combine H_p^{l-1} and statistics pooling result of H_p^{l-1} to form a new input feature vector, which is then fed into the next layer

$$\hat{h}_p^l = \alpha \left(W^l \left[H_p^{l-1} \bigoplus stat(H_p^{l-1}) \right] + b^l \right)$$

where \oplus denotes a concatenation operation, $stat(\cdot)$ is the statistics pooling function that computes the mean and standard deviation.



(2)

Frame-Level Statistics Pooling TDNN

• Assuming that the input is stationary speech, each output vector is similar to the other output vectors. The transformation can thus be simplified as follows. $mean(E[\hat{H}^{l-1}]) = \hat{h}_{p,1}^{l-1} = \hat{h}_{p,2}^{l-1} = \cdots = \hat{h}_{p,F}^{l-1}$

 $\approx \alpha \left(W^l \widehat{H}_p^{l-1} + b^l \right) = h_p^l$

where \hat{H}^{l-1} is a set of subsequences corresponding to P time steps obtained from the previous (l-1)th layer, $mean(\cdot)$ is the mean function and $std(\cdot)$ is the standard deviation function.

Datasets

- Training data:
 - VoxCeleb2 dataset
 - The *DEV* set contained 1,092,009 utterances from 5,994 celebrities, which were obtained from YouTube videos.
- Testing data:
 - VoxCeleb1 dataset
 - The dataset contained 153,516 utterances from 1,251 celebrities, which was also obtained from YouTube videos.
 - The Speakers in the Wild (SITW) dataset
 - The *EVAL* dataset provides 2,883 recordings from 180 speakers, which contained multispeaker presentations in the same utterances.

Experimental Setup

- Input features
 - 40-dimentional Mel-frequency cepstral coefficients (MFCCs)
 - the spectrogram is extracted from a 25ms window with a stride of 10ms.
- In the following results
 - "x-vector" refers to baseline system using x-vector
 - "stats-vector" refers to the system using the proposed feature representation
 - "fusion" refers to the score fusion method

$$scoreF_{i} = \frac{1}{K} \sum_{k=1}^{K} \left(score_{i}(k) - \frac{1}{S} \sum_{s=1}^{S} score_{s}(k) \right) + \frac{1}{KS} \sum_{k=1}^{K} \sum_{s=1}^{S} score_{s}(k)$$
(6)

where K is the number of speaker verification systems, S is the number of embedding pairs, and $scoreF_i$ is the i-th score that was determined by the average score of each system and total average score of all systems. 11

• Evaluation on VoxCeleb1

System -	VoxCeleb1 (cleaned)			Vox	Celeb1-E (c	leaned)	VoxCeleb1-H (cleaned)			
	EER	DCF10 ⁻²	DCF10 ⁻³	EER	DCF10 ⁻²	DCF10 ⁻³	EER	DCF10 ⁻²	DCF10 ⁻³	
x-vector	3.50	0.4009	0.6012	3.45	0.3915	0.6248	6.02	0.5387	0.7740	
stats-vector	3.29	0.3633	0.4820	3.39	0.3844	0.6276	5.94	0.5439	0.7849	
fusion	2.96	0.3542	0.5238	3.11	0.3629	0.6065	5.48	0.5184	0.7597	

 Table 1. Results on the VoxCeleb1.

Compared to the baseline x-vector system, the stats-vector system performed better by 6.0%, 1.7% and 1.3% in EER, respectively.

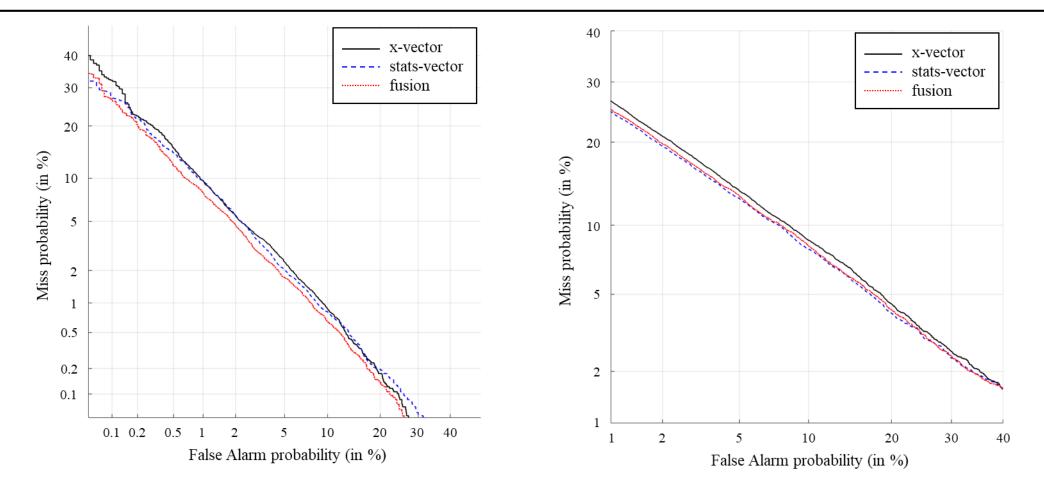
Using score fusion significantly improved the performances >> VoxCeleb1 (cleaned): improved by 15.4% in EER and 11.6% in DCF10⁻².

• Evaluation on SITW

System -	EVAL core-core			EVAL core-multi			EVAL assist-core			EVAL assist-multi		
	EER	DCF10 ⁻²	DCF10 ⁻³	EER	DCF10 ⁻²	DCF10 ⁻³	EER	DCF10 ⁻²	DCF10 ⁻³	EER	DCF10 ⁻²	DCF10 ⁻³
x-vector	4.87	0.4691	0.7023	7.72	0.5635	0.7744	7.67	0.5134	0.7279	9.22	0.5705	0.7859
stats-vector	4.74	0.4506	0.6635	7.37	0.5427	0.7524	7.31	0.4987	0.6835	▶ 8.78	0.5507	0.7493
fusion	4.69	0.4495	0.6773	7.44	0.5450	0.7581	7.43	0.5005	0.7014	8.97	0.5545	0.7627

Table 2. Results on the SITW EVAL set.

The stats-vector obtained the best performance on *EVAL* assist-multi trial list, outperforming by 4.8% in EER and 3.5% in DCF 10^{-2} .



DET curve for the trial pairs in **VoxCeleb1 (cleaned)**

DET curve for the trial pairs in SITW EVAL assist-multi

- In this study, compared to the baseline x-vector system
 - Evaluation on VoxCeleb1
 - EER (in VoxCeleb1 (cleaned)): 3.50% -> 3.29%
 - Evaluation on SITW
 - EER (in *EVAL* assist-multi): 9.22% -> 8.78%
- The proposed stats-vector system can significantly improve the speaker verification performance by considering the variation of temporal context in frame-level TDNN.

Conclusions

- This paper proposes a statistics pooling TDNN architecture (named as stats-vector) for speaker verification.
 - The TDNN structure integrates statistics pooling for each layer, to consider the variation of temporal context in frame-level transformation.
 - Compared to the x-vector architecture, this study only changed three layers in the frame-level transformation which could improve the performance of speaker verification.

Future Work

- Recently, statistics pooling replaced by attention mechanism has been proven that providing different speaker discriminative information of frames can achieve better performance.
 - In the future, we will investigate the potential of attention mechanisms, to further consider the different characteristics and improve the performance.

Thank you for your attention