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Introduction

• Articulatory feature (AF) is an important representation of 
phonological properties during speech production.
• AFs have been successfully used as features in speech recognition.

• Concatenating the acoustic features and AF information to improve speech recognition 
performance.

• It is rarely investigated in speaker recognition.

Category Attribute
Manner Approximant, Fricative, Nasal, Stop, Vocalic

Place
Anterior, Back, Continuant, Coronal, Dental, High, 
Labial, Low, Mid, Retroflex, Round, Tense, Velar, 
Voiced

Silence Silence
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Introduction

• Traditional text-independent speaker recognition systems 
• Gaussian mixture model-universal background model (GMM-UBM) 

and i-vector

• In recent years, deep neural network (DNN)-based models for speaker 
recognition have become more and more popular.
• d-vector

• x-vector

4



ICASSP 2020

Introduction

• The x-vector embedding with 
PLDA classifier is the SOTA
system for speaker verification. frame level
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Goal

• This paper integrated speaker embedding with AF embedding for 
speaker identification.
• Adding the AFs is helpful for presenting the personal pronunciation attributes 

to improve speaker identification performance.

• Using CNN-based model to extract the feature embedding
• To achieve the better performance than traditional feature extraction models.
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The Proposed Speaker Identification System

𝐴𝐹1

𝐴𝐹2

𝐴𝐹𝑇

𝐴𝐶

Output targets

= {𝑷 𝒔𝒑𝒌𝟏
𝒕𝒆𝒔𝒕 𝐴𝐶, 𝐴𝐹1 , … , 𝐴𝐹𝑇 ,

𝑷 𝒔𝒑𝒌𝟐
𝒕𝒆𝒔𝒕 𝐴𝐶, 𝐴𝐹1 , … , 𝐴𝐹𝑇 ,

… ,

𝑷 𝒔𝒑𝒌𝑬
𝒕𝒆𝒔𝒕 𝐴𝐶, 𝐴𝐹1 , … , 𝐴𝐹𝑇 }

100

40

Output targets

= {𝑷 𝒔𝒑𝒌𝟏
𝒕𝒓𝒂𝒊𝒏 𝒙 ,

𝑷 𝒔𝒑𝒌𝟐
𝒕𝒓𝒂𝒊𝒏 𝒙 ,

… ,

𝑷 𝒔𝒑𝒌𝑫
𝒕𝒓𝒂𝒊𝒏 𝒙 }

Output targets
= {𝑷 𝒂𝒓𝒕𝟏 𝒙𝒕 ,
𝑷 𝒂𝒓𝒕𝟐 𝒙𝒕 ,
… ,
𝑷 𝒂𝒓𝒕𝑷 𝒙𝒕 }

Convolution

Max-pooling

Convolution

Max-pooling

Convolution

Fully-connected

Softmax

Sigmoid

𝑨𝑪 = AC embedding

𝑨𝑭𝒕 = AF embedding

𝑥1 𝑥2 𝑥𝑇

7



ICASSP 2020

Speaker Embedding Extraction

• A CNN model is trained to produce speaker embedding.

Layer Layer Type Kernel Size Depth Stride Data Size
- input - - - [100,40,1]

1 convolution
[1,5]
[9,1]

16
32

[1,1]
[2,1]

[46,36,32]

2 max-pooling [2,2] - [2,2] [23,18,32]

3 convolution
[1,5]
[8,1]

32
64

[1,1]
[1,1]

[16,14,64]

4 max-pooling [2,2] - [2,2] [8,7,64]

5 convolution
[1,3]
[6,1]

128
128

[1,1]
[1,1]

[3,5,128]

6 convolution
[1,3]
[3,1]

256
512

[1,1]
[1,1]

[1,3,512]

7 convolution [1,3] 1024 [1,1] [1,1,1024]
8 dense & softmax - - - num. spk

Input data
• A 10040 spectrogram

Features
• 40-dimentional MFCC

Speaker embedding
• Layer 7 output

8



ICASSP 2020

Articulatory Feature Extraction

• AFs can be distinguished into different pronunciation places and 
manners by speaker voices.

• Training step:
1. The Kaldi ASR toolkit is used to align the phone positions of the training 

speech signals in GMM-HMM-based acoustic model training procedure.

2. According to the alignment information, every segment of training speech 
signals can exactly be labeled with the attributes which the phone 
corresponds to.

3. A multilayer perceptron (MLP)-based model is trained for AF recognition.

4. After the model training is completed, the AF embedding is extract from the 
output of last hidden layer.

Phoneme → Articulatory
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Enrolled Speaker Classifier

• The speaker classifier is trained to identify who the speaker is in the 
recording.

𝐴𝐹1

𝐴𝐹2

𝐴𝐹𝑇

𝐴𝐶

Output targets

= {𝑷 𝒔𝒑𝒌𝟏
𝒕𝒆𝒔𝒕 𝐴𝐶, 𝐴𝐹1 , … , 𝐴𝐹𝑇 ,

𝑷 𝒔𝒑𝒌𝟐
𝒕𝒆𝒔𝒕 𝐴𝐶, 𝐴𝐹1 , … , 𝐴𝐹𝑇 ,

… ,

𝑷 𝒔𝒑𝒌𝑬
𝒕𝒆𝒔𝒕 𝐴𝐶, 𝐴𝐹1 , … , 𝐴𝐹𝑇 }

Hidden layer produce the 1,024-dimensional feature for speaker discrimination.
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Datasets

• Training data of speaker embedding model
• King-ASR-044: 500 randomly selected speakers; the training data contained 

15,396 recordings.

• Training data of AF embedding model
• King-ASR corpora: Approximately 130 hours recordings

• 2,082 randomly selected speakers from King-ASR-044

• 1,026 randomly selected speakers from King-ASR-360

• Testing data
• LibriSpeech corpus: 460 hours “clean” speech collected from 1,172 speakers

• Speakers in the Wild (SITW) corpus: the core-core subset 
(a total of 1,201 recordings were collected from 180 speakers)

11



ICASSP 2020

Experimental Results

• Comparison on different number of enrolled speakers
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Systems
King-ASR LibriSpeech

100
speakers

1,172
speakers

d-vector
(cosine distance)

4.10 13.50

x-vector
(cosine distance)

2.92 11.18

d-vector (PLDA) 1.54 10.61
x-vector (PLDA) 1.02 8.25
AC embedding 
classifier

2.33 7.95

AC & AF embedding 
classifier

2.41 7.80

King-ASR: 100 randomly selected speakers
➢ Enrollment: 25 recordings for each speaker
➢ Evaluation: 5 recordings for each speaker

LibriSpeech: 1,172 speakers of train-clean subset
➢ Enrollment: 10 recordings for each speaker
➢ Evaluation: 2 recordings for each speaker
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Experimental Results

• The effect of signal mismatch
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Systems
SITW core-core

180
speakers

d-vector
(cosine distance)

34.42

x-vector
(cosine distance)

31.14

d-vector (PLDA) 31.43
x-vector (PLDA) 28.70
AC embedding 
classifier

26.67

AC & AF embedding 
classifier

25.19

The SITW corpus provides samples of same speaker 
across varying environmental conditions.
➢ Evaluation: 1 recordings for each speaker
➢ Enrollment: remaining recordings
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Experimental Results
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DET curves comparison on 1,172 enrolled speakers DET curves comparison on SITW core-core subset 
without considering the types of environment
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Experimental Results

• In this study, compared to the SOTA x-vector system
• When the number of enrolled speakers is increased from 100 to 1,172.

• X-vector: the performance is decreased by 87.6% in EER.

• Our system: the performance is decreased by 69.1% in EER.

• When recordings are collected from different conditions, it will cause the 
signal mismatch.
• X-vector: achieved the EER of 28.7%.

• Our system: achieved the EER of 25.19%.
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Conclusions

• In this paper, we integrated speaker embedding with AF embedding 
for speaker identification.

• We found that training a backend classifier from large number of data for 
speaker recognition can achieved a better performance than PLDA scoring.

• Combining the articulatory features to consider the speech attributes, it can 
help us to build a more robust speaker recognition model.

• Even though the all systems achieved poor performances in the case of signal 
mismatch, our proposed system is still superior to the baseline systems.
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Future Work

• In the future, we will try to train the speaker recognition with noisy 
data augmentation 
• To deal with the signal mismatch problem.

• We will investigate the potential of attention mechanisms
• To further consider the different status in speech

• Speaking style

• Emotion
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Thank you for your attention
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