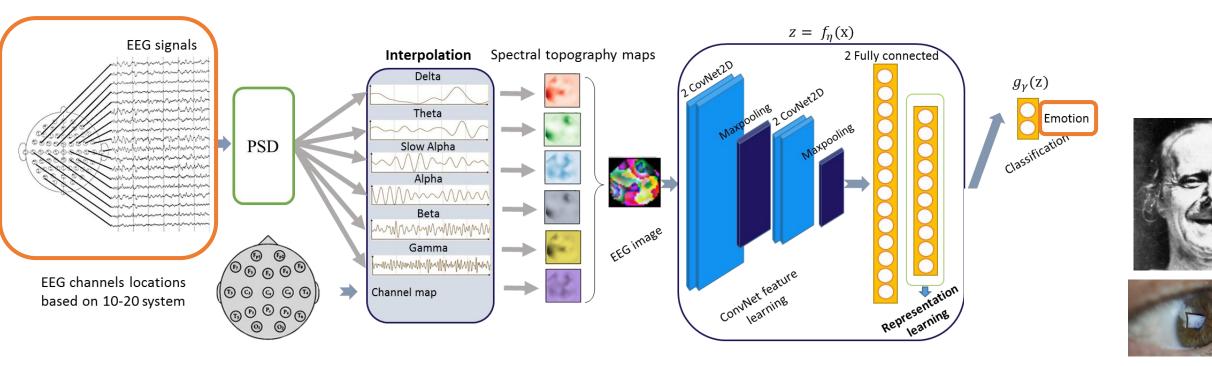
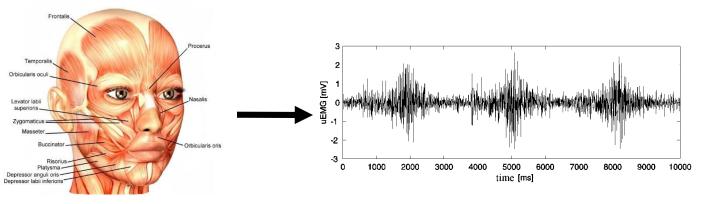
Expression-Guided EEG Representation Learning for Emotion Recognition


Soheil Rayatdoost^{*}, David Rudrauf^{*} and <u>Mohammad Soleymani[†]</u> ^{*}University of Geneva [†]University of Southern California

Overview

Multimodal emotion recognition

- Translating raw signals to lower dimensional representations
- Different modalities capturing different proxies of emotions
 - Facial and vocal expressions
 - Physiological signals (GSR, respiration effort,...)
 - Electroencephalogram (EEG) signals
- Multimodal emotion recognition is more robust and efficient
 - Feature-level fusion
 - Decision-level fusion
 - Joint representation
 - Coordinated representation



EEG, EMG & emotion

- EEG
 - Weak electrical potentials originated from cerebral activities
 - Frontal asymmetry
- EMG:
 - Behavioral activities

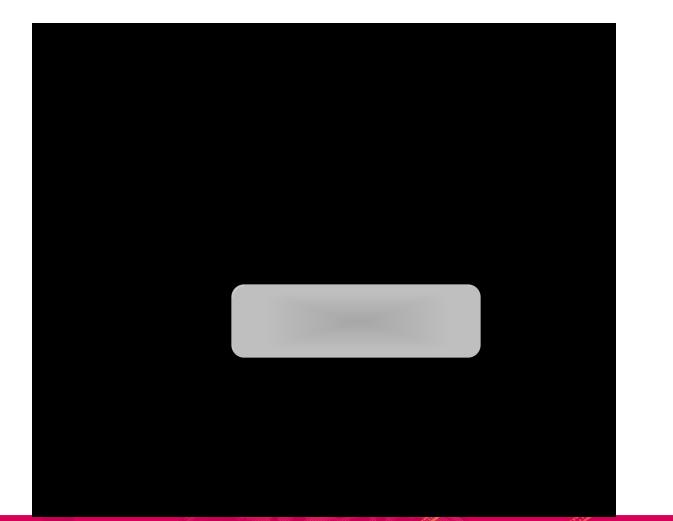
 $=\int_{0}^{\infty} \int_{0}^{\infty} dx^{2} x^{2} + \int_{0}^{\infty} dx^{2} + \int_{0}^{\infty} dx^$

Problem definition & our approach

- Cross-modal association for emotion recognition
- Development of a cross-modal deep encoder
 - A representation guided by facial and ocular activities (expression)
 - Database for interactions between modalities (DAI-EF)
 - Transferred across corpora without EMG/EOG signal
 - MAHNOB
 - Adversarial Discriminative Domain Adaptation (ADDA)

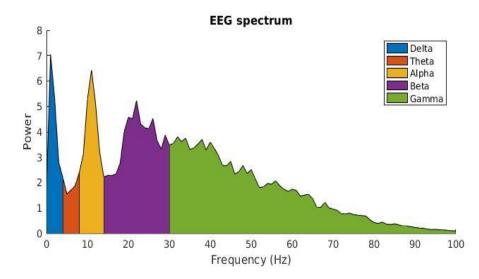
Related work

- EEG-based emotion recognition
 - Zheng et al.: Identified stable patterns over time
 - Zheng et al.: Investigated critical frequency bands
 - Rayatdoost and Soleymani: Identified learnable EEG activity for emotion recognition (Sensory, emotional activities and muscular)
 - Soleymani *et al.:* Reported that emotion-related EEG activities are highly correlated with facial muscular activity
- EEG in multimodal emotion recognition
 - Soleymani et al. and Koelstra and Patras: Fused modalities for emotion recognition
 - Decision-level fusion to be superior to the early fusion ones


Data

- Multimodal database for affect recognition and implicit tagging (MAHNOB)
 - EEG signal from 32 channels
 - 30 subjects
 - 20 video clips
- Database for Analysis of affective Interaction between EEG and Facial expression (DAI-EF)
 - EEG signal from 64 channels
 - Face video
 - 60 subjects (31 male, 17-67 years old, mean: 26.9 and SD: 8.4)
 - 40 video clips from commercial Movies

Data



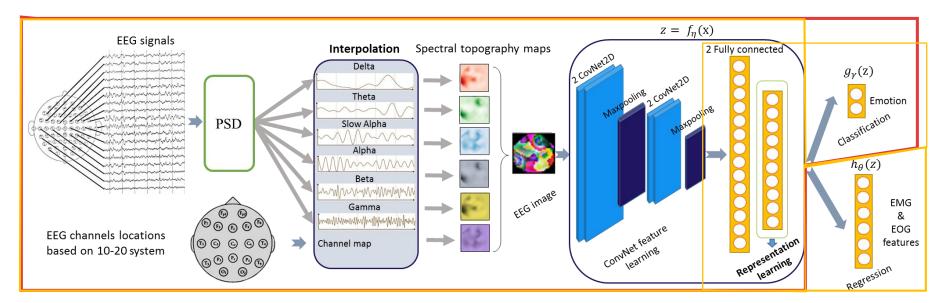
8/17

Features

- EEG
 - The power spectral density (PSD) in different frequency bands
 - Delta (0Hz < f < 4Hz), Theta (4Hz < f < 8Hz), Slow alpha (8Hz < f < 10Hz),
 - Alpha (8Hz < f < 13Hz),Beta (13Hz < f < 30Hz), Gamma (30Hz < f)
- EMG/EOG
 - Statistical moments
 - Energy and power features

Classification method

- Classes (two classes): positive/negative valence and high/low arousal
- Cross-modal encoder
 - Within-database
 - Between-database
 - Transfer learning
 - Supervised: Fine-tuning
 - Unsupervised: ADDA

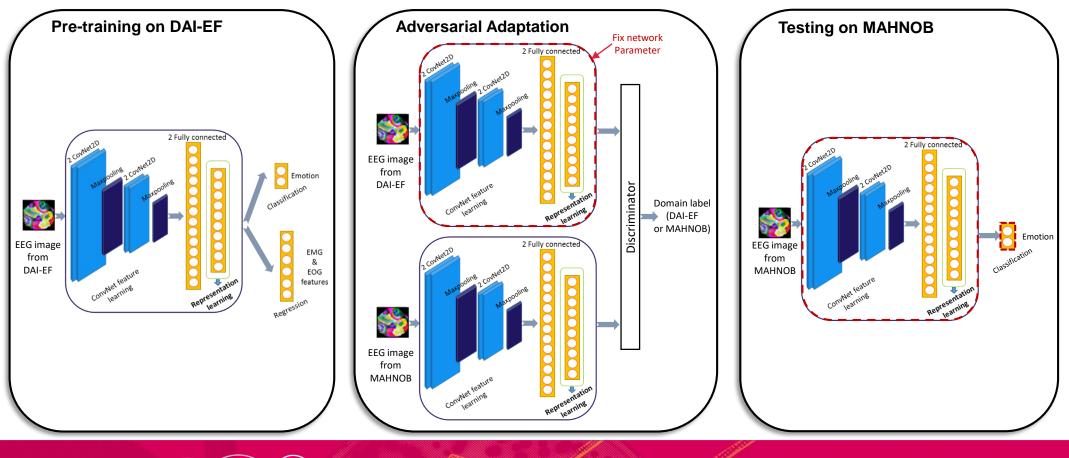


Cross-modal encoder

• EEG deep CNN

11/17

- Solely trained on EEG
- Expression encoder
- Emotion-expression encoder (Emo-expression)


ISC

Domain adaptation

• Adversarial discriminative domain adaptation (ADDA)

12/17

UNIVERSITÉ

DE GENÈVE

Evaluation

- Emotion classes: positive/negative valence and high/low arousal
 - Datasets: MAHNOB, DAI-EF
 - Number of subjects: MAHNOB(30), DAI-EF(47)
 - Normalization: per subject normalization (z-score)
 - Evaluation metrics: Classification Rate and F1-score
 - Cross validation: corpus independent, 10-fold

Experiment

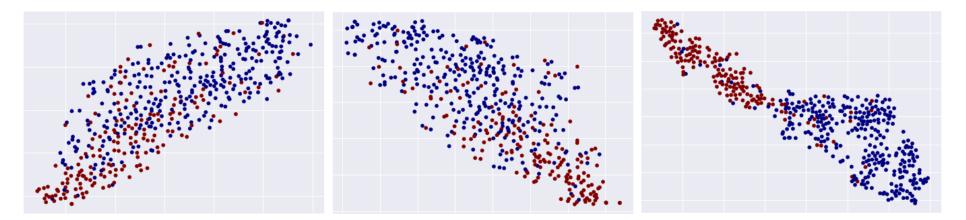
Within-database

Classifier Type	Test	Valence		Arousal	
		CR	F1	CR	F1
Deep CNN	DAI-EF	69.5	67.2	61.4	61.3
Expression	DAI-EF	71.0	70.1	61.2	61.1
Emo-expression	DAI-EF	72.8	72.1	63.2	62.5
Deep CNN	MAHNOB	62.5	60.1	55.6	53.8

Experiment

Between-database

Classifier	Test	Valence		Arousal	
Туре		CR	F1	CR	F1
Deep CNN	MAHNOB	64.8	62.9	50.3	50.0
Expression	MAHNOB	64.6	63.4	53.0	52.7
Emo-expression	MAHNOB	65.4	64.5	55.8	55.3


Transfer learning and domain adaptation

ADDA	MAHNOB	67.2	65.3	54.0	53.9
Deep CNN	MAHNOB	71.8	70.7	57.9	51.8
Expression	MAHNOB	71.8	70.8	55.1	54.4
Emo-expression	MAHNOB	73.5	72.5	56.1	55.7

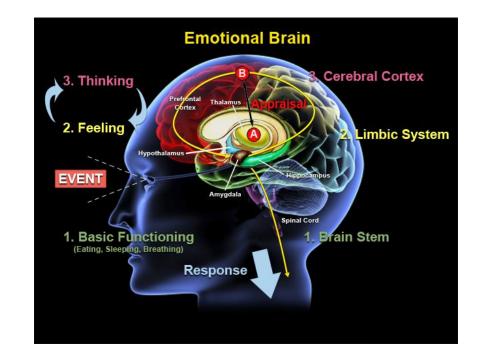
Representation's t-SNE embedding

The Deep CNN was trained on DAI-EF and was tested on MAHNOB

The Deep CNN was trained on DAI-EF and was finetuned on MAHNOB (transfer learning The emo-expression encoder was trained on DAI-EF and was fine-tuned on MAHNOB

Conclusions

- Developed a novel cross-modal representation for emotion recognition
- Cross-modal representation learning enhances the performance of emotion recognition
- The representation generalizes when transferred across corpora
 - Supervised fine-tuning
 - Unsupervised domain adaptation
- Muscular activities component of EEG signals have contributed to the learnt emotional patterns

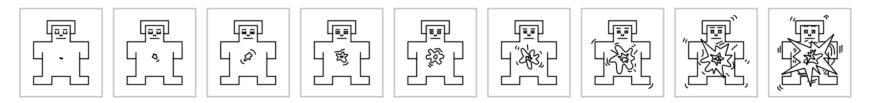


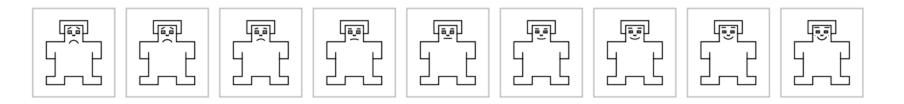
Thanks

Emotional responses

• Emotion:

- Facial and vocal expressions
- Physiological signals
- Electroencephalogram (EEG)





Self Assessment Manikin (SAM):

Arousal (activation)

Valence (positive/negative)

