WHAT MAKES THE SOUND?: A DUAL-MODALITY INTERACTING NETWORK FOR AUDIO-VISUAL EVENT LOCALIZATION

Janani Ramaswamy

Dept. of CS & E, IIT Madras, Chennai-600036, India

Can't machines mimic humans in using both audio and video for decision making?

CHALLENGES

Audio may not always be in perfect sync with the video

Presence of ambient sound like breeze

Object making the sound being momentarily occluded in the video

➢Obtaining the semantics is less direct in case of audio¹.

1. R. Arandjelovic and A. Zisserman, Objects that sound, ICCV 2017.

AUDIO-VISUAL EVENT LOCALIZATION

Supervised event localization:

Training: event label given for every segment Testing: predict event category for every segment

Input Video

Weakly-Supervised event localization: Training: event label given for whole video Testing: predict event category for every segment

APPLICATIONS

Audio-based video captioning

Audio-based video segmentation

➤Surveillance

Enhanced scene understanding

EXISTING WORKS

Tian et al. ECCV 2018¹

- Audio-visual event localization in unconstrained videos
- Audio-Visual Event (AVE) dataset

Lin et al. ICASSP 2019²

- Audio-Visual seq2seq dual n/w
 (AVSDN)
- learns global and local event info in

seq2seq manner

Wu et al. ICCV 2019³

- Dual Attention Matching (DAM)
- Encodes temporal co-occurrence

between auditory and visual signals

Ramaswamy & Das WACV 2020⁴

- Spatial & Segment-wise attention
- using two novel blocks
- A novel loss function for

unsupervised sound localization

Y. Tian, J. Shi, B. Li, Z. Duan and C. Xu, Audio-visual event localization in unconstrained videos, ECCV 2018.
 Y.-B. Lin, Y.-J. Li and Y.-C. F. Wang, Dual-modality seq2seq network for audio-visual event localization, ICASSP 2019.
 Y. Wu, L. Zhu, Y. Yan and Y. Yang, Dual Attention Matching for Audio-Visual Event Localization, ICCV 2019.
 J. Ramaswamy and S. Das, See the Sound, Hear the Pixels, WACV 2020.

MAJOR CONTRIBUTIONS

Audio-Visual Interacting Network (AVIN) for fully & weakly supervised audiovisual event localization

A novel audio-visual fusion that captures the inter and intra modality interactions using local and global information from the two modalities

Our method significantly outperforms the existing state-of-the-art methods

PROPOSED ARCHITECTURE

Audio-Visual Interacting Network (AVIN)

- Feature Extraction: Let $F_t^a \in \mathbb{R}^{d_a}$ and $F_t^v \in \mathbb{R}^{d_v}$ denote the audio and visual features extracted using CNNs. Here, d_a and d_v refer to the dimension of audio and visual features respectively.
- Modeling temporal dependency: The features $\{F_t^a, F_t^v\}_{t=1}^T$ extracted from the CNNs are then fed to two different LSTMs, the result of which is denoted as $\{h_t^a, h_t^v\}_{t=1}^T$.
- \mathcal{T} here denotes the number of non-overlapping segments (= 10 in our case) that each video is split into.

CAPTURING BILINEAR INTERACTIONS

Bilinear Pooling for audio-visual fusion

• Consider a multi-modal bilinear model :

where, $W_i \in \mathbb{R}^{d_v \times d_a}$ is the projection matrix and \tilde{z}_t is a scalar.

- To get a p-dimensional output, we use $W = [W_1, ..., W_p] \in \mathbb{R}^{d_v \times d_a \times p}$
- But this leads to a large number of parameters and high computational cost.
- Multi-modal Factorized Bilinear (MFB) Pooling¹ factorizes W into two low-rank matrices:

• Applying power and L2 normalization:

Where, $U \in \mathbb{R}^{d_v \times (qp)}$ and $V \in \mathbb{R}^{d_a \times (qp)}$ are the two low rank matrices. • refers to the Hadamard product and q represents the latent dimensionality.

1. Yu et al., Multi-modal factorized bilinear pooling with co-attention learning for visual question-answering, ICCV 2017.

Capturing inter and intra modality interactions

$s_t^a = Softmax(h_t^a \odot \overline{h}_{ave}^a) \otimes h_t^a$ ----- (4)

 $c_t^a = Softmax(h_t^a \odot \bar{s}_{ave}^v) \otimes h_t^a$

 $c_t^{v} = Softmax(h_t^{v} \odot \overline{s}_{ave}^{a}) \otimes h_t^{v}$

 $s_t^{\nu} = Softmax(h_t^{\nu} \odot \overline{h}_{ave}^{\nu}) \otimes h_t^{\nu}$

 h_t^a , h_t^v - temporally encoded features from LSTMs $\bar{h}^a_{ave}, \bar{h}^v_{ave}$ - outputs of mean pooling applied on h^a_t, h^v_t s_t^a , s_t^v - features encoded with **intra**-modality interactions c_t^a , c_t^v - features encoded with **inter**-modality interactions $\bar{s}^a_{ave}, \bar{s}^v_{ave}$ - outputs of mean pooling applied on s^a_t, s^v_t

Capturing inter and intra modality interactions

- To get a better idea about the amount of synchronization present between the two modalities, the global information also needs to be considered.
- We use self and collaborative attention¹ to capture intra and inter modality interactions.
- Intra-modality interactions:

Inter-modality interactions:

where,	
--------	--

----- (7) • - dot product

 \otimes - element-wise multiplication

----- (5)

----- (6)

1. Zhang et al., Scan: Self-and-collaborative attention network for video person re-identification, TIP 2019.

DATASET USED

Audio-Visual Event (AVE) Dataset¹

- 4143 videos (min 2s long event; max 10s long event)
- 28 event categories
- Minimum of 60 and maximum of 188 videos in each category
- Labels available video-wise as well as segment-wise (i.e., temporally labeled) with audio-visual event boundaries.

1. Y. Tian, J. Shi, B. Li, Z. Duan and C. Xu, Audio-visual event localization in unconstrained videos, ECCV 2018.

RESULTS (PERFORMANCE COMPARISON IN %)

Method	Sup. Acc.	W-Sup. Acc.
Audio	62.3	57.0
Visual	57.4	53.8
AVE ¹	72.7	66.7
AVSDN ²	72.8	66.5
DAM ³	74.5	-
Ramaswamy & Das ⁴	74.8	68.9
AVIN (Ours: Aud + Vis)	75.2	69.4

Y. Tian, J. Shi, B. Li, Z. Duan and C. Xu, Audio-visual event localization in unconstrained videos, ECCV 2018.
 Y.-B. Lin, Y.-J. Li and Y.-C. F. Wang, Dual-modality seq2seq network for audio-visual event localization, ICASSP 2019.
 Y. Wu, L. Zhu, Y. Yan and Y. Yang, Dual Attention Matching for Audio-Visual Event Localization, ICCV 2019.
 J. Ramaswamy and S. Das, See the Sound, Hear the Pixels, WACV 2020.

RESULTS (DIFFERENT FUSION STRATEGIES)

Fusion Strategy	Sup. Acc.	W-Sup. Acc.
Element-wise multiplication	60.3	55.1
Element-wise addition	63.4	58.2
Concatenation + FC	65.7	60.3
AVIN (Ours)	75.2	69.4

ABLATION STUDY

Model	Sup. Acc.	W-Sup. Acc.
Only LSTM	70.1	63.8
Only MFB ¹	71.4	66.7
LSTM + intra-mod	71.2	65.4
LSTM + intra + inter-mod	73.5	67.9
LSTM + MFB + intra+ inter-mod	75.2	69.4

1. Z. Yu, J. Yu, J. Fan and D. Tao, Multi-modal factorized bilinear pooling with co-attention learning for visual question-answering, ICCV 2017.

Audio Visual Audio + Visual

Event Category

Bar chart depicting accuracies of a few selected event categories for supervised event localization task

Output of a few segments shown for our proposed method of supervised event localization, given an input video.

THANK YOU!

JANANI RAMASWAMY

(Research Scholar, IIT Madras)

Visualization and Perception Lab – <u>www.cse.iitm.ac.in/~vplab</u>