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Mean-variance optimization (MVO)

Modern portfolio theory (introduced by Harry Markowitz in 1952) suggests an optimal
investment strategy based on the first- and second-order moments of the asset returns
⇒ mean-variance optimization (MVO).

Consider the vector, r(t) ∈ RN , which contains the returns of N assets at a time t, the
i-th entry of which is given by

ri (t) =
pi (t)− pi (t − 1)

pi (t − 1)
(1)

where pi (t) denotes the value of the i-th asset at a time t.

The MVO asserts that the optimal vector of asset holdings, w ∈ RN , is obtained from

max
w
{wTµ− λwTΣw} (2)

where µ = E {r} ∈ RN is a vector of expected future returns, Σ = cov {r} ∈ RN×N is the
covariance matrix of returns, and λ is a Lagrange multiplier.
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Issues with mean-variance optimization (MVO) I

There are a number of issues that make MVO unreliable in practice:
I Sensitivity of MVO to perturbations of the estimates of µ and Σ
⇒ small changes in µ and Σ may generate vstly different portfolio holdings w

I The inputs, µ and Σ, are time-varying

I portfolios are never truly optimal since estimates are lagged
I requires excessive turnover to adapt to changes

I The expected returns µ can be rarely forecasted with sufficient accuracy
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Issues with mean-variance optimization (MVO) II

Consequently, various risk-based asset allocation approaches have been proposed,
which drop the term µ altogether, with the optimization performed using Σ only.

The most important example is the minimum variance (MV) portfolio, formulated as

min
w

wTΣw, s.t. wT1 = 1 (3)

where 1 = [1, ..., 1]T .

The constraint, wT1 = 1, enforces full investment of the capital.

The optimal portfolio holdings then become

w =
Σ−11

1TΣ−11
(4)

Instability issues remain prominent, as the matrix inversion of Σ required in (4) may
lead to significant errors for ill-conditioned (singular) matrices.
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Singularity of covariance matrices in practice I

The numerical instability issues associated with MV portfolio optimisation leads to a
counter-intuitive result:
I The more collinear the asset returns
⇒ the more unstable the portfolio solution (inversion of matrices in (4))
⇒ the greater the need for diversification

I Increasing the size of Σ (more assets) further complicates the problem as more data
samples are required to yield a positive-definite estimate ⇒ at least 1

2 (N2 + N)
independent and identically distributed (i.i.d.) observations of r(t) are needed

The severe impact of these challenges is highlighted by the fact that, in practice, even
naive (equally-weighted) portfolios, i.e. w = 1

N 1, have been shown to outperform the
mean-variance and risk-based optimization solutions.

How do we employ the covariance information without encountering these issues? ⇒
market graph models
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Market graph models I

A universe of assets can be modelled as a network of vertices on a graph, whereby an
edge between two vertices (assets) designates both the existence of a link and the
degree of similarity between assets.

A graph, G = {V, E}, is defined as a set of N vertices, V = {1, 2, ...,N}, which are
connected by a set of edges, E ⊂ V × V. The existence of an edge between vertices m

and n is designated by (m, n) ∈ E.

The strength of graph connectivity of an N-vertex graph can be represented by the
weight matrix, W ∈ RN×N , with the entries defined as

Wmn

{
> 0, (m, n) ∈ E ,
= 0, (m, n) /∈ E ,

(5)

thus conveying information about the relative importance of the vertex (asset)
connections.
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Market graph models II

The degree matrix, D ∈ RN×N , is a diagonal matrix with elements defined as

Dmm =
N∑

n=1

Wmn (6)

and, and such, it quantifies the centrality of each vertex in a graph. Another important
descriptor of graph connectivity is the graph Laplacian matrix, L ∈ RN×N , defined as

L = D−W (7)

which serves as an operator for evaluating the curvature, or smoothness, of the graph
topology.

7 / 26



Market graph models III

A universe of N assets can be represented as a set of vertices on a market graph,
whereby the edge weight, Wmn, between vertices m and n is defined as the absolute
correlation coefficient, |ρmn|, of their respective returns of assets m and n, that is

Wmn =
|σmn|√
σmmσnn

= |ρmn| (8)

where σmn = cov {rm(t), rn(t)} is the covariance of returns between the assets m and n.

In this way, we have Wmn = 0 if the assets m and n are statistically independent (not
connected), and Wmn > 0 if they are statistically dependent (connected on a graph).
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Market graph models IV

Investment returns naturally reside on irregular (directed and sparse) graph domains.

Referring back to the MV in (4), recall that the covariance matrix Σ is dense in general
⇒ standard multivariate models implicitly assume full connectivity of the graph, and
are therefore not adequate to account for the structure inherent to real-world markets

Implicit graph-theoretic assumptions made by standard multivariate models:
I Undirected graph edges
I Completeness ⇒ all graph vertices are connected to each other

It would be highly desirable to remove unnecessary edges in order to more appropriately
model the underlying structure between assets (graph vertices) ⇒ portfolio cuts
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Portfolio cuts I

Consider an N-vertex market graph, G = {V, E}, which is grouped into K = 2 disjoint
subsets of vertices, V1 ⊂ V and V2 ⊂ V, with V1 ∪ V2 = V and V1 ∩ V2 = ∅.

A cut of this graph, for the given clusters, V1 and V2, is equal to a sum of all weights
that correspond to the edges which connect the vertices between the subsets, V1 and
V2, that is

Cut(V1,V2) =
∑
m∈V1

∑
n∈V2

Wmn (9)

A cut which exhibits the minimum value of the sum of weights between the disjoint
subsets, V1 and V2, considering all possible divisions of the set of vertices, V, is referred
to as the minimum cut. Figure 1 provides an intuitive example of a graph cut.
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Portfolio cuts II
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Figure: A cut for a graph with the disjoint subsets V1 = {1, 2, 3, 4} and V2 = {5, 6, 7, 8}. The edges
between the sets V1 and V2 are designated by thin red lines. The cut is equal to the sum of the weights
that connect the sets V1 and V2, that is, Cut(V1,V2) = 0.32 + 0.24 + 0.23 = 0.79.
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Portfolio cuts III

Within graph cuts, a number of optimization approaches may be employed to enforce
some desired properties on graph clusters:

(i) Normalized minimum cut. The value of Cut(V1,V2) is regularised by an additional
term to enforce the subsets, V1 and V2, to be simultaneously as large as possible. The
normalized cut formulation is given by

CutN(V1,V2) =
( 1

N1
+

1

N2

) ∑
m∈V1

∑
n∈V2

Wmn (10)

where N1 and N2 are the respective numbers of vertices in the sets V1 and V2. Since
N1 + N2 = N, the term 1

N1
+ 1

N2
reaches its minimum for N1 = N2 = N

2 .
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Portfolio cuts IV

(ii) Volume normalized minimum cut. Since the vertex weights are involved when
designing the size of subsets V1 and V2, then by defining the volumes of these sets as
V1 =

∑
n∈V1 Dnn and V2 =

∑
n∈V2 Dnn, we arrive at

CutV (V1,V2) =
( 1

V1
+

1

V2

) ∑
m∈V1

∑
n∈V2

Wmn (11)

Since V1 + V2 = V , the term 1
V1

+ 1
V2

reaches its minimum for V1 = V2 = V
2 . Notice that

vertices with a higher degree, Dnn, are considered as structurally more important than
those with lower degrees. In turn, for market graphs, assets with a higher average
statistical dependence to other assets are considered as more central.
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Portfolio cuts V
Finding the minimum graph cut is an NP-hard problem ⇒ to overcome the
computational burden of finding the normalized minimum cut, we employ an
approximative spectral solution which clusters vertices using the eigenvectors of L.

(i) Normalized minimum cut. It can be shown that if an indicator vector is defined as

x(n) =

{
1
N1
, for n ∈ V1,

− 1
N2
, for n ∈ V2,

(12)

then the normalized cut, CutN(V1,V2) in (10), is equal to the Rayleigh quotient of L

and x, that is

CutN(V1,V2) =
xTLx

xTx
(13)

Therefore, the indicator vector, x, which minimizes the normalized cut also minimizes
(13). This minimization problem, for the unit-norm form of the indicator vector, can
also be written as

min
x

xTLx, s.t. xTx = 1 (14)
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Portfolio cuts VI

which can be solved through the eigenanalysis of L, that is

Lx = λkx (15)

After neglecting the trivial solution x = u1, (k = 1), since it produces a constant
eigenvector, we next arrive at x = u2, (k = 2).
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Portfolio cuts VII

(ii) Volume normalized minimum cut. Similarly, by defining x as

x(n) =

{
1
V1
, for n ∈ V1,

− 1
V2
, for n ∈ V2,

(16)

the volume normalized cut, CutV (V1,V2) in (11), takes the form of a generalised
Rayleigh quotient of L, given by

CutV (V1,V2) =
xTLx

xTDx
(17)

The minimization of (17) can be formulated as

min
x

xTLx, s.t. xTDx = 1 (18)

which reduces to a generalized eigenvalue problem of L, given by

Lx = λkDx (19)
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Portfolio cuts VIII

Therefore, the solution to (18) becomes the generalized eigenvector of the graph
Laplacian that corresponds to its lowest non-zero eigenvalue, that is x = u2, (k = 2).

For the spectral solutions above, the membership of a vertex, n, to either the subset V1
or V2 is uniquely defined by the sign of the indicator vector x = u2, that is

sign(x(n)) =

{
1, for n ∈ V1,
−1, for n ∈ V2.

(20)

Notice that a scaling of x by any constant would not influence the solution for
clustering into subsets V1 or V2.
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Repeated portfolio cuts I
Although the above analysis has focused on the case with K = 2 disjoint sub-graphs, it
can be straightforwardly generalized to K ≥ 2 disjoint sub-graphs through the method
of repeated bisection.

Figure 2 illustrates the hierarchical structure resulting from K = 4 portfolio cuts of a
market graph, G. The leaves of the resulting binary tree are given by {G3,G4,G5,G7,G8}
(in red), whereby the number of disjoint sub-graphs is equal to (K + 1) = 5. Notice
that the union of the leaves equals to the original graph, i.e. G3 ∪ G4 ∪ G5 ∪ G7 ∪ G8 = G.

G

G2

G6

G8G7

G5

G1

G4G3

Figure: Graph structure resulting from K = 4 portfolio cuts
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Graph asset allocation schemes I

The aim is to determine a diversified weighting scheme by distributing capital among
the disjoint clusters (leaves) so that highly correlated assets within a given cluster
receive the same total allocation, thereby being treated as a single uncorrelated entity.

By denoting the portion of the total capital allocated to a cluster Gi by wi , we consider
two simple asset allocation schemes:

(AS1) wi = 1
2Ki

, where Ki is the number of portfolio cuts required to obtain Gi ;

(AS2) wi = 1
K+1 , where (K + 1) is the number of disjoint sub-graphs.

An equally-weighted asset allocation strategy may now be employed within each
cluster, i.e. every asset within the i-th cluster, Gi , will receive a weighting equal to wi

Ni
.
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Graph asset allocation schemes II
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Figure: Graph asset allocation strategies. (a) 1

2Ki
scheme. (b) 1

K+1
scheme.

Figures 3(a) and 3(b) demonstrate respectively the asset allocation schemes in AS1
and AS2 for K = 4 portfolio cuts, based on the market graph partitioning in Figure 2.
Notice that the weights associated to the disjoint sub-graphs (leaves in red) sum up to
unity.
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Simulations on S&P 500 stocks I

The performance of the portfolio cuts and the associated graph-theoretic asset
allocation schemes was investigated using historical price data comprising of the 100

most liquid stocks in the S&P 500 index, based on average trading volume, in the
period 2014-01-01 to 2018-01-01.

The data was split into:

1. In-sample dataset (2014-01-01 to 2015-12-31) which was used to estimate the asset
correlation matrix and to compute the portfolio cuts

2. Out-sample (2016-01-01 to 2018-01-01), used to objectively quantify the profitability of
the asset allocation strategies.

Figure 4 displays the K -th iterations of the proposed normalised portfolio cut in (13),
for K = 1, 2, 10, applied to the original 100-vertex market graph obtain from the
in-sample data set.
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Simulations on S&P 500 stocks II

(a) (b) (c) (d)

Figure: Visualisation of the 100-vertex market graph connectivity and its partitions into disjoint
sub-graphs (separated by dashed grey lines). The edges (blue lines) were calculated based on the
correlation between assets. (a) Fully connected market graph with 5050 edges. (b) Partitioned graph
after K = 1 portfolio cuts (CutV), with 2746 edges. (c) Partitioned graph after K = 2 portfolio cuts
(CutV), with 1731 edges. (d) Partitioned graph after K = 10 portfolio cuts (CutV), with 575 edges.
Notice that the number of edges required to model the market graph is significantly reduced with each
subsequent portfolio cut, since

∑K+1
i=1

1
2
(N2

i +Ni ) <
1
2
(N2+N), ∀K > 0.
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Simulations on S&P 500 stocks III

Next, for the out-sample dataset, graph representations of the portfolio, for the
number of cuts K varying in the range [1, 10], were employed to assess the performance
of the graph asset allocation schemes. The standard equally-weighted (EW) and
minimum-variance (MV) portfolios were also simulated for comparison purposes, with
the results displayed in Figure 5.

The proposed graph asset allocations schemes consistently delivered lower out-sample
variance than the standard EW and MV portfolios, thereby attaining a higher Sharpe

ratio, i.e. the ratio of the mean to the standard deviation of portfolio returns. This
verifies that the removal of possibly spurious statistical dependencies in the “raw”
format, through the portfolio cuts, allows for robust and flexible portfolio constructions.
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Simulations on S&P 500 stocks IV
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(a) Evolution of wealth for both the traditional (EW and MV) and graph-theoretic asset
allocation strategies, based on (K = 10) portfolio cuts.
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Simulations on S&P 500 stocks V

Cut Method Allocation K=1 K=2 K=3 K=4 K=5 K=10
CutV AS1 1.82 1.80 1.80 1.93 1.96 1.98
CutV AS2 1.82 1.81 1.94 2.03 1.95 2.05
CutN AS1 1.93 2.01 2.08 2.23 2.22 2.25
CutN AS2 1.93 2.04 2.17 2.65 2.51 2.48

(b) Sharpe ratios attained for varying number of portfolio cuts K .

Figure: Out-sample performance of the asset allocation strategies. Notice that the Sharpe ratio
typically improves with each subsequent portfolio cut. The traditional portfolio strategies, EW and
MV, attained the respective Sharpe ratios of SREW = 1.85 and SRMV = 1.6.
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Summary I

Portfolio cuts allow the investor to:
I Devise robust and tractable asset allocation schemes
I Consider smaller, computationally feasible, and economically meaningful clusters of assets,

based on graph cuts
I fully utilize the asset returns covariance matrix for constructing the portfolio, even

without the requirement for its inversion.

26 / 26


