Introduction ●00		Conclusions 00

Multi-scale Octave Convolutions for Robust Speech Recognition

Joanna Rownicka, Peter Bell, Steve Renals

The Centre for Speech Technology Research, The University of Edinburgh, UK

ICASSP 2020

Joanna Rownicka, Peter Bell, Steve Renals

The Centre for Speech Technology Research, The University of Edinburgh, UK

- 4 回 ト - 4 ヨ ト - 4 ヨ

Introduction ○●○		

We propose a multi-scale octave convolution layer to learn robust speech representations efficiently.

The Centre for Speech Technology Research, The University of Edinburgh, UK

Introduction ○●○		

- We propose a multi-scale octave convolution layer to learn robust speech representations efficiently.
- We build on OctConv proposed by Chen et al. (Facebook AI) at ICCV 2019 for Computer Vision (CV).

Joanna Rownicka, Peter Bell, Steve Renals

The Centre for Speech Technology Research, The University of Edinburgh, UK

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Introduction 0●0		

- We propose a multi-scale octave convolution layer to learn robust speech representations efficiently.
- We build on OctConv proposed by Chen et al. (Facebook AI) at ICCV 2019 for Computer Vision (CV).
 - Reduce the spatial redundancy of the feature maps by decomposing the output of a convolutional layer into feature maps at two different spatial resolutions, one octave apart.

Joanna Rownicka, Peter Bell, Steve Renals

The Centre for Speech Technology Research, The University of Edinburgh, UK

< ロ > < 同 > < 三 > < 三 >

Introduction 0●0		

- We propose a multi-scale octave convolution layer to learn robust speech representations efficiently.
- We build on OctConv proposed by Chen et al. (Facebook AI) at ICCV 2019 for Computer Vision (CV).
 - Reduce the spatial redundancy of the feature maps by decomposing the output of a convolutional layer into feature maps at two different spatial resolutions, one octave apart.
 - Improves efficiency AND accuracy (for CV).

Joanna Rownicka, Peter Bell, Steve Renals

The Centre for Speech Technology Research, The University of Edinburgh, UK

ヘロト 人間 ト 人 田 ト 人 田 ト

Introduction 0●0		

- We propose a multi-scale octave convolution layer to learn robust speech representations efficiently.
- We build on OctConv proposed by Chen et al. (Facebook AI) at ICCV 2019 for Computer Vision (CV).
 - Reduce the spatial redundancy of the feature maps by decomposing the output of a convolutional layer into feature maps at two different spatial resolutions, one octave apart.
 - Improves efficiency AND accuracy (for CV).
- Our work: Extend the octave convolution concept to multiple resolution groups and multiple octaves for speech recognition.

Joanna Rownicka, Peter Bell, Steve Renals The Centre for Speech 7

The Centre for Speech Technology Research. The University of Edinburgh, UK

イロト イボト イヨト イヨト

Introduction 00●		Conclusions

Motivation

Iow resolution processing path increases the size of the receptive field in the original input space

Joanna Rownicka, Peter Bell, Steve Renals

The Centre for Speech Technology Research, The University of Edinburgh, UK

A (1) × A (2) × A (2) ×

Introduction 00●		Conclusions

Motivation

- Iow resolution processing path increases the size of the receptive field in the original input space
- spatial average pooling in a low resolution group can be interpreted as a **low-pass filter** providing smoothed speech representations – potentially useful for noisy speech

The Centre for Speech Technology Research, The University of Edinburgh, UK

イロト イボト イヨト イヨト

Introduction 00●		Conclusions

Motivation

- Iow resolution processing path increases the size of the receptive field in the original input space
- spatial average pooling in a low resolution group can be interpreted as a **low-pass filter** providing smoothed speech representations – potentially useful for noisy speech
- enables to model the information changing at different rates (e.g. the characteristics of the speaker or background noise and the information necessary for phonetic discrimination)

Joanna Rownicka, Peter Bell, Steve Renals The Centre for Speech Technology Research, The University of Edinburgh, UK Multi-scale Octave Convolutions for Robust Speech Recognition

・ロト ・回ト ・ヨト ・ヨト

Method	Conclusions
000	00

MultiOctConv

Example of a MultiOctConv layer with 3 resolution groups.

Joanna Rownicka, Peter Bell, Steve Renals

The Centre for Speech Technology Research, The University of Edinburgh, UK

æ

Method ○●○	Conclusions 00

Implementation

- upsampling \rightarrow bilinear interpolation
- downsampling \rightarrow 2D average pooling

$$\begin{split} \mathbf{Y_1} = & f(X^1; W^{1 \rightarrow 1}) + \texttt{upsample}(f(X^2; W^{2 \rightarrow 1}), 2) \\ & + \texttt{upsample}(f(X^3; W^{3 \rightarrow 1}), 4) \end{split}$$

$$\begin{split} \mathbf{Y_2} = & f(X^2; W^{2 \rightarrow 2}) + \texttt{upsample}(f(X^3; W^{3 \rightarrow 2}), 2) \\ & + f(\texttt{downsample}(X^1, 2); W^{1 \rightarrow 2}) \end{split}$$

$$\begin{split} \mathbf{Y_3} = & f(X^3; W^{3 \rightarrow 3}) + f(\texttt{downsample}(X^1, 4); W^{1 \rightarrow 3}) \\ & + f(\texttt{downsample}(X^2, 2); W^{2 \rightarrow 3}) \end{split}$$

Joanna Rownicka, Peter Bell, Steve Renals

The Centre for Speech Technology Research, The University of Edinburgh, UK

・ 同 ト ・ ヨ ト ・ ヨ ト

Method	Conclusions
000	00

MultiOctConv versions

Joanna Rownicka, Peter Bell, Steve Renals

The Centre for Speech Technology Research, The University of Edinburgh, UK

イロト イロト イヨト イヨ

	Results ●00000	Conclusions 00

Results: Aurora-4

Model	OctConv	2^1	2^2	2^3	A	В	С	D	Avg.
CNN	-	-	-	-	2.19	4.68	4.22	14.53	8.69
OctCNN	L2-L15	\checkmark	-	-	2.02	4.65	4.35	14.16	8.52
OctCNN [†]	L2-L15	\checkmark	-	-	2.22	4.82	4.22	13.72	8.41
MultiOctCNN	L2-L15	\checkmark	\checkmark	-	1.98	4.51	4.11	14.00	8.37
MultiOctCNN	L2-L15	\checkmark	-	\checkmark	2.02	4.59	3.92	13.82	8.31
MultiOctCNN	L2-L15	\checkmark	\checkmark	\checkmark	2.30	4.88	4.18	14.06	8.58
MultiOctCNN	L2-L15	-	-	\checkmark	2.02	4.50	4.17	13.87	8.32
MultiOctCNN †	L2-L15	-	-	\checkmark	2.32	4.73	4.24	13.57	8.31

[†] models with batch normalization after ReLU

A – clean, B – w/ noise, C – mismatched mic., D – mismatched mic. w/ noise

Joanna Rownicka, Peter Bell, Steve Renals

The Centre for Speech Technology Research, The University of Edinburgh, UK

< ロ > < 回 > < 回 > < 回 > < 回 >

	Results 0●0000	

Unpublished results: Aurora-4

 $lacksymbol{
ho}$ $lpha_n \in [0,1]$ is a fraction of channels allocated to each group

• Previously,
$$lpha_n^{(i)} = \mathit{const.}$$
 for $1 \leq i \leq L$

▶ Now,
$$\alpha_n^{(i)} \neq \textit{const.}$$

 Fraction for the low resolution group changes gradually across the layers

$lpha_{low}^{(2-3)}$	$ ightarrow lpha_{low}^{(4-6)}$	$ ightarrow lpha_{low}^{(7-9)}$	$ ightarrow lpha_{low}^{(10-12)}$	$ ightarrow lpha_{low}^{(13-15)}$	WER
0.125	$\rightarrow 0.125$	$\rightarrow 0.125$	$\rightarrow 0.125$	$\rightarrow 0.125$	8.31
0.9	$\rightarrow 0.7$	$\rightarrow 0.5$	$\rightarrow 0.3$	$\rightarrow 0.1$	9.67
0.7	$\rightarrow 0.55$	$\rightarrow 0.4$	$\rightarrow 0.25$	$\rightarrow 0.1$	8.76
0.5	$\rightarrow 0.4$	$\rightarrow 0.3$	$\rightarrow 0.2$	$\rightarrow 0.1$	8.23

Joanna Rownicka, Peter Bell, Steve Renals

The Centre for Speech Technology Research, The University of Edinburgh, UK

A B > A B

	Results 00●000	Conclusions 00

Results: AMI MDM

					IH	М	SE	M	ME	M
Model	OctConv	2^1	2^2	2^3	dev	eval	dev	eval	dev	eval
CNN	-	-	-	-	33.4	38.3	49.1	54.0	43.9	48.0
OctCNN	L2-L15	\checkmark	-	-	33.0	37.7	48.9	54.0	43.7	47.7
OctCNN	L1-L15	\checkmark	-	-	32.5	37.4	48.2	53.3	42.9	47.2
MultiOctCNN	L1-L15	\checkmark	\checkmark	-	32.8	38.1	48.9	53.9	43.7	47.9
MultiOctCNN	L1-L15	\checkmark	\checkmark	\checkmark	33.7	38.7	49.5	54.6	44.1	48.4
MultiOctCNN ‡	L1-L15	\checkmark	\checkmark	\checkmark	33.2	38.3	49.3	54.5	44.0	48.5
MultiOctCNN	L1-L15	-	-	\checkmark	32.9	38.1	49.1	54.3	43.8	48.0

[‡] model without the inter-frequency exchange paths

IHM – Individual Headset Mic. SDM – Single Distant Mic. MDM – Multiple Distant Mic.

э

イロン イロン イヨン イヨン

Joanna Rownicka, Peter Bell, Steve Renals

The Centre for Speech Technology Research, The University of Edinburgh, UK

	Results	
	000000	00

Efficiency: computational cost and memory footprint

- dependent on α , number of groups and compression rate
- with 4 groups, one octave apart (compared to a vanilla CNN)
 - ► 54% of computations
 - 73% of memory

Joanna Rownicka, Peter Bell, Steve Renals

The Centre for Speech Technology Research, The University of Edinburgh, UK

A 35 A 4

	Results 0000●0	

Comparison of representations

How similar are clean and noisy hidden representations subject to an affine transformation?

$$heta^* = rgmin_{ heta} rac{1}{ND} \sum_{i=1}^N ig\| y(\mathrm{x}_{h,clean}^{(i)}, heta) - \mathrm{x}_{h,noisy}^{(i)} ig\|^2$$

Joanna Rownicka, Peter Bell, Steve Renals

The Centre for Speech Technology Research. The University of Edinburgh, UK

	Results	
	000000	

MSE affine transformation loss

	Conclusions ●0

 Multi-scale octave CNN models for robust and efficient speech recognition

The Centre for Speech Technology Research, The University of Edinburgh, UK

< 同 > < 三 > < 三 >

	Conclusions ●0

- Multi-scale octave CNN models for robust and efficient speech recognition
 - multiple resolution groups with a spatial reduction of more than one octave improve the recognition

Joanna Rownicka, Peter Bell, Steve Renals

The Centre for Speech Technology Research, The University of Edinburgh, UK

くぼ ト く ヨ ト く ヨ ト

	Conclusions ●0

- Multi-scale octave CNN models for robust and efficient speech recognition
 - multiple resolution groups with a spatial reduction of more than one octave improve the recognition
 - it is also more computationally and memory efficient

Joanna Rownicka, Peter Bell, Steve Renals

The Centre for Speech Technology Research, The University of Edinburgh, UK

< 回 > < 三 > < 三

	Conclusions •0

- Multi-scale octave CNN models for robust and efficient speech recognition
 - multiple resolution groups with a spatial reduction of more than one octave improve the recognition
 - it is also more computationally and memory efficient
 - MultiOctCNNs are the most beneficial for speech with background noise

Joanna Rownicka, Peter Bell, Steve Renals

The Centre for Speech Technology Research, The University of Edinburgh, UK

くぼ ト く ヨ ト く ヨ ト

	Conclusions •0

- Multi-scale octave CNN models for robust and efficient speech recognition
 - multiple resolution groups with a spatial reduction of more than one octave improve the recognition
 - it is also more computationally and memory efficient
 - MultiOctCNNs are the most beneficial for speech with background noise
 - OctConv applied to the input might help with reverberation

Joanna Rownicka, Peter Bell, Steve Renals

The Centre for Speech Technology Research, The University of Edinburgh, UK

くぼ ト く ヨ ト く ヨ ト

	Conclusions ●0

- Multi-scale octave CNN models for robust and efficient speech recognition
 - multiple resolution groups with a spatial reduction of more than one octave improve the recognition
 - it is also more computationally and memory efficient
 - MultiOctCNNs are the most beneficial for speech with background noise
 - OctConv applied to the input might help with reverberation
- ► MSE affine transfromation loss as a proxy robustness measure

Joanna Rownicka, Peter Bell, Steve Renals The Centre for Speech Technology Research, The University of Edinburgh, UK

▲ 同 ▶ ▲ 国 ▶ ▲ 国

	Conclusions ●0

- Multi-scale octave CNN models for robust and efficient speech recognition
 - multiple resolution groups with a spatial reduction of more than one octave improve the recognition
 - it is also more computationally and memory efficient
 - MultiOctCNNs are the most beneficial for speech with background noise
 - OctConv applied to the input might help with reverberation
- ► MSE affine transfromation loss as a proxy robustness measure
 - OctConv design enables for robust representation learning especially for speech with additive noise

Joanna Rownicka, Peter Bell, Steve Renals The Centre for Speech Technology Research, The University of Edinburgh, UK

・ 同 ト ・ ヨ ト ・ ヨ ト

	Conclusions ○●

Thank you for your attention!

Contact: j.m.rownicka@sms.ed.ac.uk

This work was supported by a PhD studentship from the DataLab Innovation Centre, Ericsson Media Services, and Quorate Technology.

Joanna Rownicka, Peter Bell, Steve Renals The Centre for Speech Technology Research, The University of Edinburgh, UK

< 回 > < 回 > < 回