# Unified Signal Compression Using Generative Adversarial Network

Bowen Liu Ang Cao Hun-Seok Kim Department of EECS, University of Michigan - Ann Arbor, USA

> 45<sup>th</sup> ICASSP Virtual Meeting May 5<sup>th</sup>, 2020



### Outline

Motivation

DNN-based unified signal compression algorithm for image and speech

New Framework

Back Propagation Generative Adversarial Network (BPGAN)

- Methodology
  Compression / decompression
  BPGAN training
- Result and Evaluation

# Introduction: Signal compression

#### Motivation for signal compression

To reduce latency & bandwidth for data communication

- To reduce space for data storage
- 3000 color images ( $1800 \times 2400 \times 24bits \approx 32GB$ )
- 60 minutes stereo audio (320kbps  $\approx$  1GB)
- Image compression Conventional algorithms: JPEG, BPG
- Speech compression
  Conventional algorithms: CELP,AMR

#### Research question

- Can DNN based algorithm outperform conventional compression codecs?
- Can we unify compression framework for different signal types (image and speech)?

# Introduction: GAN

**GAN Architecture** 



Generative Adversarial Network (GAN)

Generative: learn a generative model Adversarial: train in an adversarial setting Networks: use Deep Neural Networks

### Introduction: GAN



- Generative Adversarial Network (GAN)
  Generative: learn a generative model
  Adversarial: train in an adversarial setting
  Networks: use Deep Neural Networks
- Core idea: Adversarial training
  Generator: generates indiscriminative samples

### Introduction: GAN

**Train Discriminator** 



- Generative Adversarial Network (GAN) Generative: learn a generative model Adversarial: train in an adversarial setting Networks: use Deep Neural Networks
- Core idea: Adversarial training
  - **Generator**: generates indiscriminative samples **Discriminator**: distinguishes between real and fake samples

# **Inspiration: BPGAN**





Inspired by GAN, our algorithm updates the latent vector via back-propagation through Discriminator and Generator

Fix discriminator and generator weights during updating latent vector

# Framework: BPGAN Compression



- Applicable to image and speech compression tasks
- GAN with task specific loss functions
  Improve the quality of generator output

# Framework: BPGAN Compression



- Search the compressed signal in latent space
  - $\boldsymbol{z}$  is the input to the generator  $\boldsymbol{G}$

Optimize z that minimizes loss between target signal x and G(z)

# Step 1: Signal pre-processing



#### Image:

Resize the image to  $n \times m$  (pre-defined) pixels

#### Audio:

Use Short Time Fourier Transformation (STFT) to get the spectrogram

Transform to mel-spectrogram and apply normalization

# Step 2: Encode the signal



Encode the target signal x to the latent vector z with an encoder Neural Network

# Step 3: Optimize the latent vector



- Update the latent vector z via the back-propagation through the generator G
  - Compute the gradient  $\partial F(x, G(z))/\partial z$  for each iteration
  - Obtain the optimal latent vector  $\tilde{\boldsymbol{z}}$  that minimizes the loss function
- The weights of GAN unchanged during signal compression & decompression

# Step 4: Quantization and entropy coding



- Apply ADMM to quantize the latent vector  $\tilde{z}$  during back propagation
- Encode the quantized result with entropy coding

# Step 5: Signal decompression and reconstruction



- Obtain the decompressed signal  $G(\tilde{z})$  by feeding  $\tilde{z}$  to generator G
- Reconstruct the signal by post-processing the signal  $G(\tilde{z})$

# Methodology: Training GAN

Step 1. Train the GAN (*E*, *G*, *D*) with unquantized (floating point) values

Adversarially train Generator (G) and discriminator (D)

Cascade an encoder by the generator to form an auto-encoder structure

Train the encoder to learn a mapping from the signal to a latent space vector

#### Step 2. Train a GAN with quantized input

Regularize the latent vector to quantized input

Retrain generator and discriminator with regularized latent vectors



# Methodology: ADMM quantization

- Alternating direction method of multipliers (ADMM) quantization
  - ADMM is a divide-and-conquer optimization algorithm
  - Describe the problem of quantization as:

 $\min_{\{Z\}} f(\{Z\})$ subject to  $Z \in S$ 

where  $f(\{Z\})$  is the loss function, the set S is the quantized space

• To apply ADMM for the above optimization problem, define indicator function:

 $g(Z) = \begin{cases} 0 & if \ Z \in S \\ +\infty & otherwise \end{cases}$ 

Rewrite the problem with incorporate auxiliary variables *R* 

 $\min_{\substack{\{Z\}\\ subject to \ Z = R}} f(\{Z\}) + g(R)$ 

# Methodology: ADMM quantization

- Alternating direction method of multipliers (ADMM) quantization
  - Through application of the augmented Lagrangian, ADMM decomposes the problem to two subproblems
  - The first is minimizing the loss function of the original DNN with an additional L2 regularization term

$$U^{k} \coloneqq U^{k-1} + Z^{k} - R^{k}$$
$$\min_{\{Z\}} f(\{Z\}) + \frac{\rho}{2} \cdot \left\| Z - R^{k} + U^{k} \right\|_{2}^{2}$$

where  $U^k$  is the dual variable updated in each iteration

The second one can be optimally and analytically solved

 $\min_{\{R\}} g(R) + \frac{\rho}{2} \cdot \left\| Z^{k+1} - R + U^k \right\|_2^2$ Solution:  $R^{k+1} \coloneqq \prod_S (Z^{k+1} + U^k)$ 

where  $\Pi_{S}(\cdot)$  is Euclidean projection of  $Z^{k+1} + U^{k}$  onto the set S

- Those subproblems could be solved by updating Z and R iteratively
- The optimal latent vector could be obtained by retraining and quantizing the latent vector iteratively

### Network architecture

Generator Network Topology



#### Discriminator Network

Contains 5/8 (Speech/Image) convolutional layer

#### Encoder Network

Contains 5/9 (Speech/Image) convolutional layer

#### Dataset

- Open Images Dataset V5 (Image compression)
  Containing 9M images with 600 classes
- Kodak Dataset (Image compression)
  Well-known image compression dataset
- TIMIT dataset (Speech compression)

Containing 6300 sentences spoken by 630 speakers from 8 major dialect regions



Audio signal



Image signal



### **Result and evaluation: Comparison**

| Image<br>Methods | Bitrate<br>(bpp) | PSNR | MS-SSIM | ImageNet<br>Top-1 error% | ImageNet<br>Top-5 error% |  |
|------------------|------------------|------|---------|--------------------------|--------------------------|--|
| Original         | 24               | -    | -       | 23.7                     | 6.8                      |  |
| BPGAN            | 0.286            | 32.9 | 0.968   | 23.7                     | 6.8                      |  |
| GAN based [1]    | 0.305            | 28.2 | 0.922   | 26.0                     | 7.9                      |  |
| JPEG             | 0.306            | 26.9 | 0.864   | 42.5                     | 16.6                     |  |
| BPG              | 0.298            | 32.3 | 0.961   | 25.8                     | 7.4                      |  |

- Compression tested with different datasets unused for training
- Achieves state-of-the-art performance for both image/speech compression
  Obtain high quality decompressed signal with extreme low bitrate

# **Result and evaluation: Comparison**

| Image<br>Methods  | Bitrate<br>(bpp) | PSNR | MS-SSIM | ImageNet<br>Top-1 error% | ImageNet<br>Top-5 error% |              |
|-------------------|------------------|------|---------|--------------------------|--------------------------|--------------|
| Original          | 24               | -    | -       | 23.7                     | 6.8                      |              |
| BPGAN             | 0.286            | 32.9 | 0.968   | 23.7                     | 6.8                      |              |
| GAN based [1]     | 0.305            | 28.2 | 0.922   | 26.0                     | 7.9                      |              |
| JPEG              | 0.306            | 26.9 | 0.864   | 42.5                     | 16.6                     |              |
| BPG               | 0.298            | 32.3 | 0.961   | 25.8                     | 7.4                      |              |
| Speech<br>Methods | Bitrate<br>(bps) | PESQ | MUSHRA  | Kaldi<br>PER%            | MLP<br>PER%              | LSTM<br>PER% |
| Original          | 256k             | 4.50 | 95.0    | 18.7                     | 18.6                     | 15.4         |
| BPGAN             | 2k               | 3.25 | 64.1    | 20.9                     | 20.8                     | 18.6         |
| CELP              | 4k               | 2.54 | 32.0    | 28.2                     | 27.6                     | 27.3         |
| CELP              | 8k               | 3.39 | 59.4    | 23.0                     | 23.6                     | 21.2         |
| Opus              | 9k               | 3.47 | 79.3    | 22.7                     | 23.7                     | 21.2         |
| AMR               | 6.6k             | 3.36 | 58.9    | 22.6                     | 23.6                     | 22.3         |

- Compression tested with different datasets unused for training
- Achieves state-of-the-art performance for both image/speech compression
  Obtain high quality decompressed signal with extreme low bitrate

### **Result and evaluation: Visualization**



[1] Eirikur Agustsson et al., "Generative adversarial networks for extreme learned image compression," arXiv:1804.02958, 2018.

# **Result and evaluation: Speech compression**

BPGAN achieves state-of-the-art performance for speech compression

- Original Audio (256kbps) Compressed Audio (2kbps)
- Don't ask me to carry an oily rag like that.
- Don't ask me to carry an oily rag like that "In another tune".
- Materials: ceramic modeling clay: red, white or buff.
- Here, he is, quite persuasively, the very embodiment of meanness and slyness.
- Sometimes, he coincided with my father's being at home.

### **Result and evaluation: Quantization**

ADMM quantization outperforms regular uniform quantization



# Summary

BPGAN: New GAN-based unified signal compression framework
 Applicable to both image and speech signal
 Achieves variable bitrate vs. quality tradeoff for compressed signal
 Outperform state-of-the-art compression algorithms

