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Physical layer secrecy

Wiretap channel: A wants to transmit U to B, E has access to the
channel, but with additional distortion
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Secrecy capacity (. = maximum rate satisfying

1. Reliability: lim P|U = U] = 0
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A less stringent formulation

The condition

lim I(U,Z") =0

n—>00
might be too strict in some cases.

Example: A wants to transmit an image (U) representing a car to
B but doesn’t want E to know that it represents a car (S).

The image contains a lot of information, and not all that
information is useful for classification.




A less stringent formulation

Useful information U to be transmitted to B
Sensitive information S to be kept secret from E
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Physical layer secrecy Our problem

d Reliability: lim P[fj +* U] =0 d Quality: [E[d([]’ [7)] <eg,
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O Secrecy: limI(U;Z™) =0 A Privacy: I(S;2") < &,
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Optimization problem

O Quality: E[d(U, D] < ¢,
A Privacy: I(S;Z™) < §,

min  E[d(U,0)] + al(S;Z™)
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Lower bound on I(S; Z™)

Mutual information between S and Z™:

1(5:27) = ) ps(s) ) panis(2"ls) log
&

Requires to estimate
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conditional distributions

Alternative formulation:

p i E[d(U, ﬁ)]“"(él}f;’é (—H (es, q)))
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es = one hot enCOding of S Variational lower bound
q = adversary likelihood estimation




Minimax cross-entropy game

The problem
min {IE[d(U, 0)| + oc(rznax(—H(eS, q))}

pXTl|U5»fB S|zn

can be interpreted as a minimax game.

 (A,B) needs to minimize
Lip = Eld(U,U)] — aH(es, q)

1 E needs to minimize

Ly = H(es, q)




Secure image transmission

Application: transmitting images while preventing the
eavesdropper from correctly classifying the class.
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min {MSE[d(U, 0] + « (5nax(—H (es, q))}
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Stability issues

At each training cycle E’s estimation is brought to be
independent of S after training (A,B), then the subsequent

training of E partly recovers the missing information.
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Softmax equalization

Main idea: rather than maximizing the cross-entropy between
the one-hot encoding and the softmax, minimize the cross-
entropy between the distribution p and the softmax, where

_—11 1T £ = # of cl
p = 277 = # of classes

 (A,B) needs to minimize
LAB — E[d(U, U)] + O(H(p_, CI)

1 E needs to minimize

Ly = H(es, q)
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Training results

Softmax equalization is more stable and the results are
subject to less variance.
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Test results

Main parameters: quality-privacy tradeoff o, SNR of E.

SNR of (A, B) = 10 dB.

PSNR (dB)
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Test results
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Conclusions

We have:

0 introduced a relaxed privacy condition with respect to physical
layer secrecy to protect sensitive information only

0 proposed a general formulation of the corresponding minimax
problem

0 applied this formulation to secure image transmission
employing adversarial neural networks

0 shown that it is possible to regulate the tradeoff between
quality and privacy and to exploit the channel advantage to
achieve better secrecy.
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Future work

0 Train the model with fading channels to improve the scalability
for SNR variations

0 Introduce a stochastic encoder to improve the quality-privacy
tradeoff
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