

Synchronous Transformers for End-to-End Speech Recognition

Zhengkun Tian, Jiangyan Yi, Ye Bai, Jianhua Tao, Shuai Zhang, Zhengqi Wen National Laboratory of Pattern Recognition, Institute of Automation, CAS Email: zhengkun.tian@nlpr.ia.ac.cn

National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, P. R. China

Streaming End-to-End ASR

• In order to be truly useful, such end-to-end models must decode speech utterances in a streaming fashion. Streaming ASR can record and recognize almost **synchronously**.

Asynchronous Decoding

For most of attention-based sequence-to-sequence models, the inference process can be divided into two separated stages:

- a. Encoding
- b. Decoding (Beam Search)

Highlights of Our Work

We proposed a synchronous transformer (Sync-Transformer) model.

- Perform encoding and decoding synchronously.
- Combine the advantages of transformers and transducers in great depth.
- High accuracy and low latency

Model Architecture

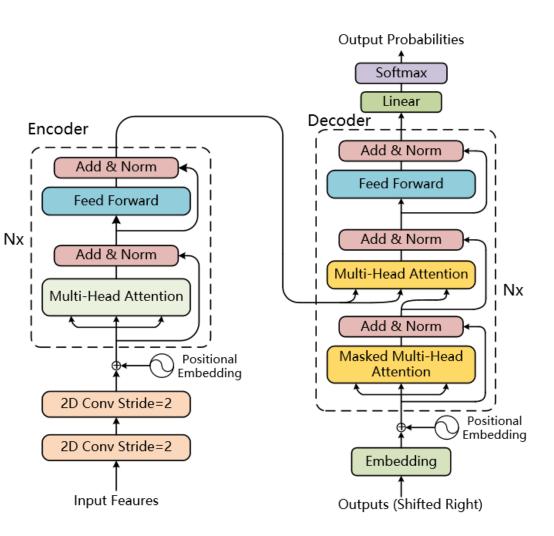
≻Encoder

- > 2 Conv layer with stride 2 (Sub-sampling)
- ➢ 6 blocks
 - Feed Forward Net
 - Multi-Head Attention
 - Layer Norm And Residual Connection

≻Decoder

- ≻6 blocks
 - Feed Forward Net
 - Multi-Head Attention
 - Layer Norm And Residual Connection

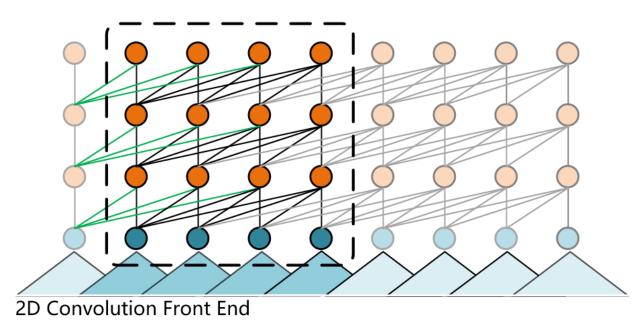
Shared Embedding and output linear weights



Model Architecture

- Local Multi-Head Self-Attention in Encoder
- Every node in the encoder only focus on its left context and ignore its right contexts completely during calculating self-attention weights.

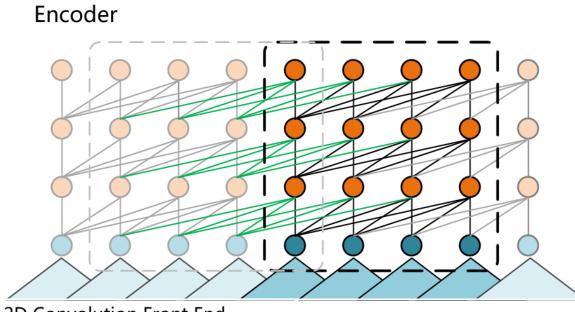
Encoder



Model Architecture

• Local Multi-Head Self-Attention in Encoder

There is an **overlap** between two adjacent chunks to maintain a smooth transition of information between chunks.

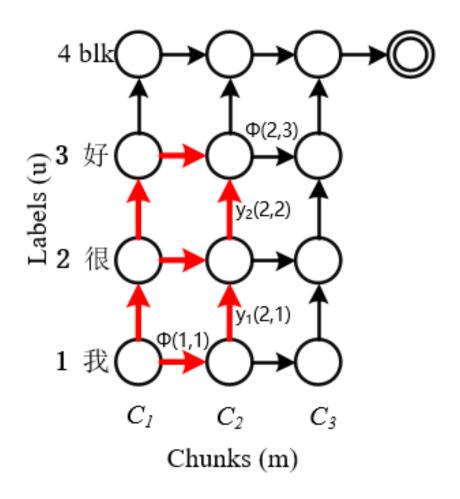


2D Convolution Front End

- Forward Variables $\alpha(m, u)$
 - *m* the *m*-th of chunk
 - *u* the *u*-th of labels

$$\alpha(m, u) = \alpha(m - 1, u)\phi(m, u) + \alpha(m, u - 1)y_u(m, u - 1)$$

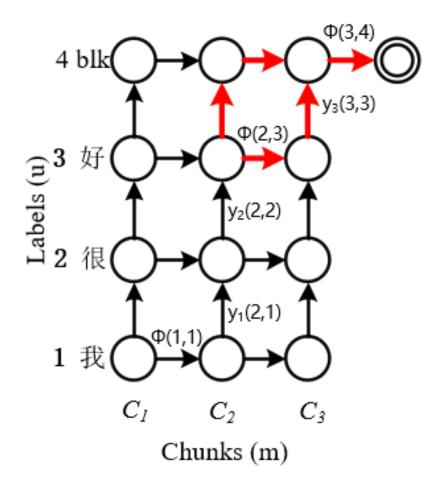
$$p(y_{1:U}|x_{1,T}) = \alpha(M, U+1)\phi(M, U+1)$$



- Backward Variables $\beta(m, u)$
 - *m* the *m*-th of chunk
 - *u* the *u*-th of labels

$$\begin{split} \beta(m,u) &= \beta(m+1,u)\phi(m,u) \\ &+ \beta(m,u+1)y_{u+1}(m,u) \end{split}$$

 $\beta(M, U+1) = \phi(M, U+1)$

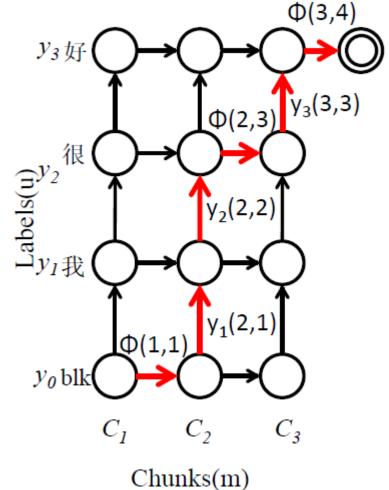


Sum over the probabilities of all alignment paths

$$p(y_{1:U}|x_{1,T}) = \sum_{(m,u):m+u=n} \alpha(m,u)\beta(m,u)$$

Minimize the negative log-loss function

$$\mathcal{L} = -\ln p(y_{1:U}|x_{1,T})$$



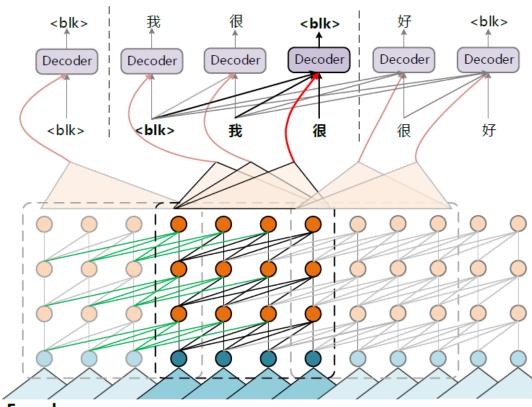
The training process is divided into two steps.

© Utilize a trained transformer model to **initialize** the parameters of Sync-Transformer.

O Then apply the **forward-backward** algorithm to train a Sync-Transformer.

Inference

- Sync-Transformer decoder an utterance chunk by chunk.
- Once a <blk> is predicted, It will switch to the next chunk and continue decoding.



Dataset

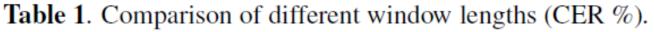
- Training Set 150 hours / 120098 utterances
- Development 20 hours / 14326 utterances
- Test set 10 hours / 7176 utterances

Experiments Setup

- Encoder
 - 2 layer conv layer front end (stride 2, channels 256 and kernel size 3)
 - 6 blocks / d_{model} 256 / d_{ff} 1024
 - Left context length 20 and right context length 0
- Decoder
 - + 6 blocks / d_{model} 256 / d_{ff} 1024
 - Share the weights of embedding and output linear layer
 - 4232 characters as model units (including a <blk> and a <unk>)
- Training And Inference
 - First stage: 60 epochs Second stage: 10 epochs
 - Beam Width: 5

Experiments

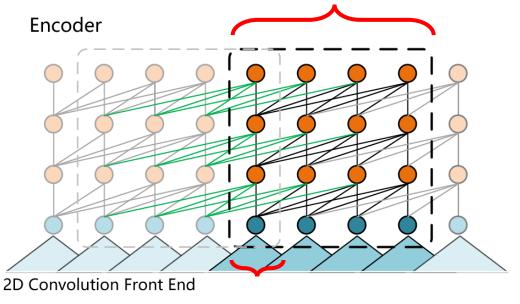
• Comparison of different window lengths and overlap lengths



W	5	10	15	20	25
Dev	8.64	7.99	8.57	8.68	11.04
Test	9.73	9.06	9.51	9.76	11.04 11.71

 Table 2. Comparison of different overlap lengths (CER %).

				1	
Dev	8.60	7.91	7.99	9.53	9.61
Test	9.56	8.91	9.06	9.53 10.39	10.47



W

B

Experiments

Comparison with other end-to-end models

Model	Online	Steps	Dev	Test
LAS [20]	No	U	-	10.56
Transformer	No	U	7.80	8.64
RNN-T [10]	No	T+U	10.13	11.82
SA-T [10]	No	T+U	8.30	9.30
Chunk-Flow SA-T [10]	Yes	T+U	8.58	9.80
Sync-Transformer	Yes	U+M	7.91	8.91

Table 3. Comparisons with other models (CER %).

U is the length of the target sequence.T is the number of frames.M is the number of chunks.

$U < U + M \ll T < T + U$

Conclusions

- We proposed a streaming model named synchronous transformer, which combines the advantages of transformers and transducers model in great depth.
- Sync-Transformer can encode and decode synchronously like transducer.
- Sync-Transformer can achieve high accuracy like transformer and low latency.

Thanks

Email: zhengkun.tian@nlpr.ia.ac.cn

