
Synchronous Transformers 
for End-to-End Speech Recognition

Zhengkun Tian, Jiangyan Yi, Ye Bai, Jianhua Tao, Shuai Zhang, Zhengqi Wen
National Laboratory of Pattern Recognition,

Institute of Automation, CAS
Email: zhengkun.tian@nlpr.ia.ac.cn

National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, P. R. China



Streaming End-to-End ASR
• In order to be truly useful, such end-to-end models must 

decode speech utterances in a streaming fashion. Streaming 
ASR can record and recognize almost synchronously.
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Asynchronous Decoding
For most of attention-based sequence-to-sequence models,
the inference process can be divided into two separated stages:

a. Encoding

b. Decoding (Beam Search)
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Highlights of Our Work
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We proposed a synchronous transformer (Sync-Transformer) model.

• Perform encoding and decoding synchronously.

• Combine the advantages of transformers and transducers in great depth.

• High accuracy and low latency



Model Architecture
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Encoder
 2 Conv layer with stride 2 (Sub-sampling)
 6 blocks

 Feed Forward Net
Multi-Head Attention
 Layer Norm And Residual Connection

Decoder
6 blocks

 Feed Forward Net
Multi-Head Attention
 Layer Norm And Residual Connection

Shared Embedding and output linear
weights



Model Architecture
• Local Multi-Head Self-Attention in Encoder
• Every node in the encoder only focus on its left context and ignore its 

right contexts completely during calculating self-attention weights.
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Model Architecture
• Local Multi-Head Self-Attention in Encoder
There is an overlap between two adjacent chunks to maintain a 
smooth transition of information between chunks.
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Forward Variables 𝛼𝛼 𝑚𝑚,𝑢𝑢
m – the m-th of chunk
u – the u-th of labels

Training
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Training
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Backward Variables 𝛽𝛽 𝑚𝑚,𝑢𝑢
m – the m-th of chunk
u – the u-th of labels



Training
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Minimize the negative log-loss function

Sum over the probabilities of all alignment paths



Training
The training process is divided into two steps. 
◎ Utilize a trained transformer model to initialize the parameters of 
Sync-Transformer. 

◎ Then apply the forward-backward algorithm to train a Sync-
Transformer.
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Inference
• Sync-Transformer decoder an utterance chunk by chunk.
• Once a <blk> is predicted, It will switch to the next chunk and 

continue decoding.
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Dataset

• A public Mandarin speech corpus AISHELL-1
• Training Set  150 hours / 120098 utterances
• Development 20 hours / 14326 utterances
• Test set 10 hours / 7176 utterances

13National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, P. R. China



Experiments Setup
• Encoder

• 2 layer conv layer front end (stride 2, channels 256 and kernel size 3)
• 6 blocks /𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 256 / 𝑑𝑑𝑓𝑓𝑓𝑓 1024
• Left context length 20 and right context length 0

• Decoder
• 6 blocks /𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 256 / 𝑑𝑑𝑓𝑓𝑓𝑓 1024
• Share the weights of embedding and output linear layer
• 4232 characters as model units (including a <blk> and a <unk> )

• Training And Inference 
• First stage: 60 epochs       Second stage: 10 epochs
• Beam Width: 5
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Experiments
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• Comparison of different window lengths and overlap lengths
𝑊𝑊

𝐵𝐵



• Comparison with other end-to-end models

Experiments
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𝑈𝑈 is the length of the target sequence.
𝑇𝑇 is the number of frames.
𝑀𝑀 is the number of chunks.

𝑈𝑈 < 𝑈𝑈 + 𝑀𝑀 ≪ 𝑇𝑇 < 𝑇𝑇 + 𝑈𝑈



Conclusions
• We proposed a streaming model named synchronous transformer, 

which combines the advantages of transformers and transducers 
model in great depth.

• Sync-Transformer can encode and decode synchronously like 
transducer.

• Sync-Transformer can achieve high accuracy like transformer and low 
latency.
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Thanks
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