
Stabilizing Multi-agent Deep Reinforcement Learning 

by Implicitly Estimating Other Agents’ Behaviors

Yue Jin1 Shuangqing Wei2 Jian Yuan1 Xudong Zhang1 Chao Wang1

1 Department of Electronic Engineering, Tsinghua University

2 School of Electrical Engineering and Computer Science, Louisiana State University

45th IEEE International Conference on Acoustics, Speech and Signal Processing

ICASSP 2020



Outline

• Background

• Method

• Experiments

• Conclusion

2020/5/17 2

Stabilizing Multi-agent Deep Reinforcement Learning by Implicitly 

Estimating Other Agents’ Behaviors



1.  BACKGROUND

Markov Game

• Markov game describes a process where multiple agents make decisions in a 

random environment

• A Markov game with N agents includes:

• A set of states:  𝑠 ∈ 𝑆,    Joint action:  𝑎1, ⋯ , 𝑎𝑁
• Transition probability function:  𝑝(𝑠′|𝑠, 𝑎1, ⋯ , 𝑎𝑁)

• Reward function of each agent:  𝑟𝑖(𝑠, 𝑎1, ⋯ , 𝑎𝑁)

• Objective

• To find the optimal policies:  {𝜋𝑖
∗}𝑖=1
𝑁 that can 

maximize each agent’s cumulative discounted rewards:

𝐸[σ𝜏=0
𝑇 𝛾𝜏𝑟𝑖(𝑠

𝑡+𝜏, 𝑎1
𝑡+𝜏, ⋯ , 𝑎𝑁

𝑡+𝜏)]
2020/5/17 3

𝑠𝑡 𝑎1
𝑡

Agent 1

Agent 2

...
Agent N

𝑎2
𝑡

𝑎𝑁
𝑡

𝑟1
𝑡

𝑠𝑡
𝑟2
𝑡

𝑠𝑡

𝑟𝑁
𝑡

Environment



1.  BACKGROUND

Independent deep Q-learning

• Independent learner and controller

• Discrete action space

• Action-value function of agent i: 

𝑄𝑖
𝜋𝑖 𝑠, 𝑎𝑖 = 𝐸[෍

𝜏=0

𝑇

𝛾𝜏𝑟𝑖
𝑡+𝜏|𝑠𝑡 = 𝑠, 𝑎𝑖

𝑡 = 𝑎𝑖 , 𝜋𝑖]

• Optimal action-value function:  𝑄𝑖
∗ 𝑠, 𝑎𝑖 = 𝑚𝑎𝑥𝜋𝑖𝑄𝑖

𝜋𝑖 𝑠, 𝑎𝑖

• Each agent learns a greedy policy:  𝑎𝑖
𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑖𝑄𝑖

∗ 𝑠𝑡 , 𝑎𝑖

2020/5/17 4

Agent 𝑖

Environment and
other agents

𝑠𝑡+1

𝑎𝑖
𝑡𝑠𝑡

𝑟𝑖
𝑡

𝑟𝑖
𝑡+1



1.  BACKGROUND

• Learn the optimal action-value function based on the

Bellman optimality equation: 

2020/5/17 5

𝑦𝑖
𝑡, target value for learning                    .

Loss function:𝐿 𝜃𝑖 = 𝐸𝑠𝑡,𝑎𝑖
𝑡[ 𝑦𝑖

𝑡 − 𝑄𝑖(𝑠
𝑡 , 𝑎𝑖

𝑡; 𝜃𝑖)
2
]

Experience replay method:

Store transitions (𝑠𝑡 , 𝑎𝑖
𝑡 , 𝑟𝑖

𝑡+1, 𝑠𝑡+1 ) in a replay buffer.

Randomly sample a minibatch to calculate the gradient 

of the loss function.

Independent deep Q-learning



1.  BACKGROUND

• Learn the optimal action-value function based on the

Bellman optimality equation: 

2020/5/17 6

Non-stationary component

Independent deep Q-learning

𝑦𝑖
𝑡, target value for learning                    .

Loss function:𝐿 𝜃𝑖 = 𝐸𝑠𝑡,𝑎𝑖
𝑡[ 𝑦𝑖

𝑡 − 𝑄𝑖(𝑠
𝑡 , 𝑎𝑖

𝑡; 𝜃𝑖)
2
]



1.  BACKGROUND

Fingerprint-based method

• Augmenting the input of the action-value function with low-dimensional 
fingerprints correlated with the changes of other agents’ policies.

• Essentially, owing to being augmented with the fingerprint, state-action pairs stored in the 
past training iterations are outdated in the current training iteration. Using them to 
update parameters of the action-value function is meaningless and time-wasting. 

2020/5/17 7

𝑠𝑡 , 𝒙 𝑠𝑡 , 𝒙

• Training iteration number 

• The rate of exploration (the value of 𝜀 in 𝜀-greedy policy)



2.  METHOD

Stabilizing MARL

• Take 𝒂−𝑖 into account to evaluate a modified action-value function as:

𝑄𝑖
𝜋𝑖 𝑠, 𝒂−𝑖 , 𝑎𝑖

• Bellman optimality equation: 

• Define an action estimation as: 

෢𝒂−𝑖
𝑡 = 𝑓 𝑠−𝑖

𝑡 , 𝑠−𝑖
𝑡+1

• Other agents’ states at adjacent time steps can partially reveal their actions

• 𝑓: a function to be learned

• Stochastic environments  𝑝(𝑠−𝑖
𝑡+1|𝑠−𝑖

𝑡 , 𝒂−𝑖
𝑡 )

• Assume that  𝑓(𝑠−𝑖
𝑡 , 𝑠−𝑖

𝑡+1) is an unbiased estimate of  𝒂−𝑖
𝑡

2020/5/17 8

𝒂−𝑖
𝑡 = 𝐸𝑠−𝑖

𝑡+1|𝑠−𝑖
𝑡 , 𝑎−𝑖

𝑡 𝑓(𝑠−𝑖
𝑡 , 𝑠−𝑖

𝑡+1)



2.  METHOD

Stabilizing MARL

• Derive the Bellman optimality equation to learn the modified action-value 

function

2020/5/17 9

Use the last action estimate:  ෢𝒂−𝑖
𝑡 = 𝑓 𝑠−𝑖

𝑡 , 𝑠−𝑖
𝑡+1

• The optimal policy has continuity property      

• Looking only one-step ahead can result in more stable learning



2.  METHOD

• Assume that 

• Given 𝑠−𝑖
𝑡 and 𝑎−𝑖

𝑡 ,  𝑓(𝑠−𝑖
𝑡 , 𝑠−𝑖

𝑡+1) does not change much

• 𝑄𝑖
∗ is locally linear

• Learn a composite function incorporating the action estimation function:

2020/5/17 10

Stabilizing MARL



2.  METHOD

• Learn G-function:
• The approximate Bellman optimality equation for 𝐺𝑖 :

• Loss function:

• Make decisions:

Stabilizing MARL

2020/5/17 11



1.  BACKGROUND

Simulation settings

• Multi-agent cooperative navigation problem
• Agents need to cooperate through motions to reach a set of targets with the 

minimum time consumption

• Randomly generate positions of targets and agents in every episode

• Different numbers of targets and agents (N =2; 3; 4; 5; 6)

Observation: relative position 

coordinates of targets and other agents

Action: select a target to head for

3. EXPERIMENTS

2020/5/17 12

Assuming a constant speed.Fig. 1: Illustration of the cooperative navigation task involving three agents



1.  BACKGROUND

Results

3. EXPERIMENTS

2020/5/17 13

Our method shows better convergence performance

• Faster convergence speed

• Higher reward gain• Training performance

Independent deep Q-learning Fingerprint-based method



1.  BACKGROUND

Results

3. EXPERIMENTS

2020/5/17 14

• Testing performance
• One thousand randomly generated tasks

Success: 

Agents successfully arrive at different targets

Maximum navigation time: 

The time cost by the agent who is the last 

one to arrive at a target



4.  CONCLUSION

We prove that 

by incorporating the estimation function into the action-value function, 

each agent can learn a policy in an approximate stationary environment.

We present 

a novel method to stabilize multi-agent DRL, which learns a modified action-value 

function incorporating implicit estimate of other agents’ actions to stabilize agents’ 

policy learning and improve learning efficiency.

Empirical results show that

compared with independent deep Q-learning and the fingerprint-based method, 

our method significantly improves the convergence speed and policy performance.

4. CONCLUSION



Thank you for your attention!

2020/5/17 16

45th IEEE International Conference on Acoustics, Speech and Signal Processing

ICASSP 2020


