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I. BACKGROUND

Markov Game

* Markov game describes a process where multiple agents make decisions in a
St

. ~ ™) t
random environment | agent1 -2
1 »
* A Markov game with N agents includes: St_,¢ Y
t
* A set of states: s €5, Jointaction: a4, -, ay T2, Agent? )
* Transition probability function: p(s’|s,aq, -, ay)
* Reward function of each agent: 7;(s, a4, -, ay) s; Y
> N
. . t Agent N
* Objective N )
» To find the optimal policies: {r;};., that can

maximize each agent’s cumulative discounted rewards: —[ Environment ]‘7

E[Xr=o v ri(s™ ", ar™", -+, ay™)]
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I. BACKGROUND

Independent deep Q-learning

t

St ( a'i

N
] Agent i
* Independent learner and controller +\ J

* Discrete action space

7}t4‘1

: : : Environment and]
* Action-value function of agent i: Seanl  other agents |

T
QZTL(S’ ai) — E[z OyTTit+T|St = s, ait — airni]
=

* Optimal action-value function: Q;(s, ;) = max;,Q;" (s, a;)

* Each agent learns a greedy policy: af = argmax,,Q; (s*,a;)
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I. BACKGROUND

Independent deep Q-learning

* Learn the optimal action-value function based on the

Bellman optimality equation: {yl target value for learning Q7 (s, al). }

/ Loss function:L(6;) = E ,alt[(yl Qi(st aj; 9i))2]

Qi (s'a}) =Y p(s"T1s", al

t%—l

’L

Experience replay method:

Store transitions (s¢, af,rf*t, st+1)

in a replay buffer.
Randomly sample a minibatch to calculate the gradient
of the loss function.
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I. BACKGROUND

Independent deep Q-learning

* Learn the optimal action-value function based on the

Bellman optimality equation: yf, target value for learning Q; (s", ;). }
Qi(s', a3 67))

/[Loss function:L(6;) = Ee ,¢[(vf —

t 1 t+1 t+1
+ +7H§§_>1<Q (s"h ai" )]

’L

Qi (s'a}) =) p(s"T1s", al

= 3" 3 p(sttYst, at,al )plal s

Stt1

?,

t"'l—l—fymaxQ (s t—|—1 t+1)]

st+1 g t : /

Non-stationary component
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I. BACKGROUND

Fingerprint-based method

* Augmenting the input of the action-value function with low-dimensional
fingerprints correlated with the changes of other agents’ policies.
Qi(s'al) =D Do p(s™ s’ af alp(al |s") | +y max Q7 (s, “1)]

Gt t
’L

* Training iteration number
* The rate of exploration (the value of ¢ in £-greedy policy)

* Essentially, owing to being augmented with the fingerprint, state-action pairs stored in the
past training iterations are outdated in the current training iteration. Using them to
update parameters of the action-value function is meaningless and time-wasting.
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2. METHOD

Stabilizing MARL

* Take a_; into account to evaluate a modified action-value function as:

T
Qi (s, a_i, ai)

. . . t+1
* Bellman optimality equation: Qi(s".a’;af)= > p(s"*' a5ls", al;, af)
8t+1,aiﬁ_-lj1
* Defi ' imati : t+1 L
eflne an action estimation as e +7H§3‘_’5Q (11 gL gt

= f(sty st
. Other agents’ states at adjacent time steps can partially reveal their actions
 f:a function to be learned

t+1 . . . ¢ i — =F t+1|S t f(S—u t+1
e Assume that f(s;, stT1) is an unbiased estimate of a‘ :
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2. METHOD

Stabilizing MARL

* Derive the Bellman optimality equation to learn the modified action-value

function
Q: (st al ,,at) = Z p(st+L, t+1S ,a’ ., al) Q*(s5E 41, , o f( st t+1) al) ~ Z
sattl T e e
ri oy maxQ (s t_tl,afﬂ)] p(s" s’ aly af) it Qi (s f(shi sT50) ™)
||

Use the last action estimate: a; = f(st;, stt!

* The optimal policy has continuity property

* Looking only one-step ahead can result in more stable learning
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2. METHOD

Stabilizing MARL Q;‘(st,Esillst_i’at_if(st stth,al) = )

_Z,
st+1

e Assume that p(s'thst, a ;,af)

riT o ymax Qs f(sii,st_tlxa:“)]
’L

+ Given st and at;, f(st, st*1) does not change much/
* Q; is locally linear

A ar, QU S (L s al) B B ot g [ ymax Q7 (s, f(s%;stﬁl):a?l)]

t4—1

* Learn a composite function incorporating the action estimation function:

GZU’ (Sa S—iq, 8,—1}5 ai) — Q:—Z (87 f(s—ia 8,—1})7 a"i)
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2. METHOD

Stabilizing MARL

* Learn G-function:
* The approximate Bellman optimality equation for G;:

x/ t _t t+1 t\ ~o
]E.St_—zl St_i,at_iGi (S ’S—’:‘;’S—i ,CLZ-) ~

t+1 t+1 t+1
Est+1|st at.at . T’?;+ +7H%$¥G;F(St+1’8t_i,8_-|; aai+ ):|
bl 25 —1
a .
T
* Loss function: -
_ t t t+1 ¢, 2

* Make decisions:

t

—1
arg max G (s*, 81, st ., a;)
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3. EXPERIMENTS

Simulation settings

* Multi-agent cooperative navigation problem
* Agents need to cooperate through motions to reach a set of targets with the
minimum time consumption
* Randomly generate positions of targets and agents in every episode

* Different numbers of targets and agents (N =2; 3; 4; 5; 6)

Observation: relative position

A North ¢ Target .
¥ coordinates of targets and other agents

" A2 R e Agent

X

Action: select a target to head for

Ty ° Al ¥

Fig. |: lllustration of the cooperative navigation task involving three agents

Assuming a constant speed.
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3. EXPERIMENTS

Results

* Training performance
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Our method shows better convergence performance

* Faster convergence speed
* Higher reward gain

Average episode reward
|
N
o
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3. EXPERIMENTS

Results

* Testing performance
* One thousand randomly generated tasks

Maximum navigation time:

The time cost by the agent who is the last
one to arrive at a target

Success:

Agents successfully arrive at different targets

N Success rate Normalized average maximum time
Ours Ind-DQN | Fingerprint Ours Ind-DQN Fingerprint

2 99.9% 99.6% 99.6% 0.517 0.516 0.521

3 98.2% 97.7% 98.3% 0.537 0.541 0.548

4 97.8% 94.7% 96.3% 0.560 0.589 0.563

5 | 96.1% 4.0% 66.1% | 0.581 0.603 0.585

6 |l 91.2% 2.6% 18.3% | 0.589 0.613 0.596
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4. CONCLUSION

We present

a novel method to stabilize multi-agent DRL, which learns a modified action-value

function incorporating implicit estimate of other agents’ actions to stabilize agents’
policy learning and improve learning efficiency.

We prove that

by incorporating the estimation function into the action-value function,
each agent can learn a policy in an approximate stationary environment.

Empirical results show that

compared with independent deep Q-learning and the fingerprint-based method,
our method significantly improves the convergence speed and policy performance.
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