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Non-negative convolutional coding (NN-CC), Blind spatially-variant
deconvolution, and Source localization (SL)

Consider the convolutional coding model

s =

K∑
k=1

hk ~ xk + w , (1)

with {xk}K1 ⊂ T (M,N) some feature maps and {hk}K1
a dictionary of convolutional kernels with ‖hk‖1 constant
across k.

Consider a spatially variant blur, i.e. a model in which

s[m,n] =

M,N∑
m̂,n̂=1

y [m̂, n̂]hm̂,n̂ [m− m̂, n− n̂] + w[m,n] (2)

where y ∈ T+ (M,N) is an image and hm,n a spatially variant
point-spread function (PSF) of an optical system with ‖hm,n‖1

constant across (m,n).

If the feature maps are non-negative {xk}K1 ⊂ T+ (M,N) and ∀m,n, hm,n ∈ conv
(
{hk}K1

)
, the convolutional

coding model (1) is equivalent to that of a spatially-variant convolution (2). Indeed, if y =
∑K

k=1 xk and

αk[m,n] = xk[m,n]
y[m,n] if y[m,n] > 0, then (1) can be expressed as

s[m,n] =
∑
m̂,n̂

y [m̂, n̂]

K∑
k=1

αk [m̂, n̂]hk [m− m̂, n− n̂] + w[m,n] . (3)

In diverse scientific scenarios, image data is explained in terms of a number of point- or extended-sources emitting some measurable
signal. SL methods automate the accurate localization of these sources. In particular, if we consider a number Q of point-sources that
produce signals with shapes {hq}Q1 with ‖hq‖1 = 1 and scale yq > 0, the image data s follows the model

s[m,n] =

Q∑
q=1

yq hq[m−mq, n− nq] + w[m,n] =

Q∑
q=1

(hq[m̂, n̂] ~ yq δ[m̂−mq, n̂− nq])[m,n] + w[m,n] . (4)

With the spatially-variant convolutional model in (3), we aim to recover

y[m,n] =

Q∑
q=1

yq δ[m−mq, n− nq], and αk [m,n] such that hq =

K∑
k=1

αk [mq, nq]hk , (5)

i.e., the locations of each source, their scale, and a characteritzation of their shapes.

Convolutional sparse coding (CSC) for feature extraction, Background

Under the model (1) and with a given convolutional dictionary {hk}K1 , CSC is often addressed by the convolutional basis pursuit
denoising (BPDN) problem

min
{xk∈T(M,N)}K1


∥∥∥∥∥∥

K∑
k=1

hk ~ xk − s

∥∥∥∥∥∥
2

2

+ λ

K∑
k=1

‖xk‖1

 . (6)

With respect to standard sparse coding schemes, (6) naturally allows for invariance constraints (e.g., spatial, rotational) to be part of
the feature extraction process, and greatly reduces the number of model parameters.
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Non-negative convolutional group-sparse
coding (NN-CGSC)

Based on the coupling between the non-negative xk in the parallel between (1) and

(2), we propose a non-negative group-sparsity regularized version of the BPDN

min
{xk∈T+(M,N)}K1


∥∥∥∥∥∥

K∑
k=1

hk ~ xk − s

∥∥∥∥∥∥
2

w

+ λ
G∑
g=1

√ ∑
(m,n,k)∈Gg

x2
k[m,n]

 .

This allows us to force variable selection or variable grouping on the different
αk[m,n]s and can be used to

provide prior information on likely and unlikely combinations of kernels hk,

select regions on an image that are likely to be blurred by the same PSF hm,n.

Proximal
optimization

In order to derive the acceler-
ated proximal gradient (APG)
algorithm to solve NN-CGSC,
we had to characterize

the data fidelity penalty,
and therefore, the mapping
{xk}K1 7→

∑K
k=1 hk ~ xk, in

terms of its adjoint opera-
tor and its norm, which we
achieved by generalizing our
characteritzation of the diffu-
sion operator in [1].

the non-negative group spar-
sity regularizer, in terms of
its proximal operator, which
we achieved by particulariz-
ing our result in [2], where we
provided this proximal oper-
ator in a functional setting.

In particular, if R(x) is the
group-sparsity regularizer and
δ+ the non-negative (0,∞)-
indicator we have that

proxR+δ+
= proxR ◦P+ .

Accelerated proximal
gradient for NN-CGSC

1: l← 0
2: for k = 1 to K do
3: z

(0)
k ← x

(0)
k ,

4: end for
5: repeat
6: l← l + 1

7: u(l)←
K∑
k=1

hk ~ z
(l−1)
k − s

8: for k = 1 to K do
9: x

(l)
k ←

[
z

(l−1)
k − hm

k ~
[
w � u(l)

]]
+

10: end for
11: for g = 1 to G do

12: n←

√√√√ ∑
(m,n,k)∈Gg

(
x

(l)
k [m,n]

)2

13: for (m,n, k) ∈ Gg do

14: x
(l)
k [m,n]←

(
1− λ

2
n−1

)
+

x
(l)
k [m,n]

15: end for
16: end for
17: for k = 1 to K do
18: z

(l)
k ← x

(l)
k + α(l)

(
x

(l)
k − x

(l−1)
k

)
19: end for
20: until convergence of {x(l)

k }K1

SL by NN-CGSC, a foreground recovery example

(a) Section of an image of the Milky Way’s nuclear star cluster

(b) Recovery of the foreground component using NN-CGSC

(c) Left to right, filters {hk}5
1 used for foreground reconstruction k ∈ {1, 2, . . . , 5} and background removal k = 6.

Foreground reconstruction using the APG algorithm for NN-CGSC with M × N × 2 groups of the form Gm,n,p =
{(m,n, k) : m = i, n = j, k ∈ ℵp}, with p ∈ {1, 2} and ℵ1 = {1, 2} and ℵ2 = {3, 4, 5}. Above, section of a
composite color image of the Milky Way’s nuclear star cluster, generated by The Hubble Heritage Team, NASA and
ESA (STScI-2016-11) from an image capture using Hubble’s Wide Field Camera 3. Middle, foreground recovery of
the image in grayscale, artificially saturated for printing clarity, showing only lower half of dynamic range.
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