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Introduction

Top-down process in Speech Production

In speech production, articulatory
movements provide an intermediate
representation between neuro-motor
planning (high level) and speech
acoustics (low level).
Neuro-motor planning in brain aims to
convey linguistic information as discrete
abstract units which are passed via
motor nerves to activate vocal muscles.
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Introduction

Motivation

Estimating articulatory movement information from linguistic level or
Phonemes (high level) → Top-Down approach.
Estimating articulatory movement information from Acoustic features
(Low level) → Bottom-up approach.

To what extent articulatory motion can be extracted from the
linguistic information (top-down) compared with that from acoustic to
articulatory inversion (bottom-up).
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Introduction

Objectives of the work

Prediction of articulatory motion from phoneme sequences.

Comparison of performance of models predicting articulatory
sequences from a phoneme sequence without timing information, with
timing information and acoustic features.
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Introduction

Objectives of the work

To experimentally examine where production of articulatory sequences
can be accurately determined from linguistic features without any
timing information.

Input Features Encoded information
Phoneme Sequences(PHN) linguistic

Time Aligned Phonemes(TPHN) linguistic+timing
MFCC linguistic+para-linguistic+timing

MFCC+TPHN linguistic+para-linguistic+timing
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Data Collection

Data Collection

Dataset: 460 phonetically balanced
English sentences from MOCHA-TIMIT
corpus1.

10 subjects: 6 males (M1, M2, M3, M4,
M5, M6) and 4 females (F1, F2, F3,
F4) (20-28 years of age)

Recorded audio using microphone and
corresponding articulatoy movements
using EMA AG5012

1A. Wrench, “Mocha-TIMIT speech database,” The 18th International Conference on Pattern Recognition,
1999.

2“3d electromagnetic articulograph,” available online: http://www.articulograph.de/, last accessed: 4/2/2020
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Data Collection

Data Collection

Six sensors are connected: UL-upper lip, LL-lower lip, Jaw-jaw,
TT-tongue tip, TB-tongue body, TD-tongue dorsum.

Upper Lip: UL
Lower Lip: LL
Jaw: Jaw
Tongue TIP:TT
Tongue Body: TB
Tongue Dorsum: TDJaw

LL

UL
TBTD

TT

Y
X
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Data Collection

Input Features

Force alignment is performed using Kaldi3 speech recognition toolkit
on recorded speech to obtain phonetic transcription which consists of
39 ARPABET symbols and an extra label for silence.

Phonetic features: Input phoneme labels are represented as 40
dimensional one-hot vectors (PHN, TPHN).
Acoustic features: Mel frequency cepstral coefficients (MFCC) with
window length (20ms) and shift (10ms).

3Daniel Povey et al., “The Kaldi speech recognition toolkit,” in IEEE workshop on automatic speech recognition
and understanding, 2011.
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Data Collection

Summary of Input Features

Summary of input features, corresponding encoded information and
models used for articulatory movement estimation

Input Features Dimension Encoded information Model
Phoneme Sequences(PHN) 40 linguistic Attention

Time Aligned Phonemes(TPHN) 40 linguistic+timing BLSTM
MFCC 13 linguistic+para-linguistic+timing BLSTM

MFCC+TPHN 53 linguistic+para-linguistic+timing BLSTM
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Details of Attention and BLSTM models

Tacotron architecture

Tacotron4 architecture
models duration information
for articulatory movement
estimation from PHN.
Three major components in
tacotron model are:
Encoder, Attention and
Decoder.

4Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng Chen,
Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan, et al., “Natural TTS synthesis by conditioning wavenet on mel
spectrogram predictions,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) ,
2018, pp. 4779–4783
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Details of Attention and BLSTM models

BLSTM model

BLSTM model is used to learn mappings from TPHN, MFCC and
MFCC+TPHN features to articulatory movements.

This model includes 3 BLSTM layers with 256 units each and a dense
layer at the output.
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Experimental Setup

Experimental Setup

Dataset split: Train(80%), Test(10%) and Validation(10%)*.
Due to scarcity of training data for tacotron attention to learn
alignments, we adopted Generic training and subject specific
Fine-tuning on it.
Evaluation metric: Correlation coefficient (CC) and RMSE.

*Subject-Dependent training: train and test sentences from same subject
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Experimental Setup

Training

Three types of training done for all features:

Training Type No. of Models Training Initialization
Subject-Dependent 10 per subject Random

Generic One for all subjects Random
Fine-Tuning 10 per subject Generic model
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Results and Discussion

Performance Comparison

Performance comparison across different features:

Training PHN TPHN MFCC MFCC+TPHN
RMSE CC RMSE CC RMSE CC RMSE CC

Subject-
Dependent (SD)

2.04
(0.109)

0.33
(0.031)

1.243
(0.087)

0.808
(0.033)

1.116
(0.095)

0.844
(0.025)

1.05
(0.086)

0.87
(0.024)

Generic(G) 1.48
(0.098)

0.68
(0.043)

1.44
(0.108)

0.74
(0.046)

1.107
(0.091)

0.849
(0.023)

1.01
(0.083)

0.877
(0.022)

Fine-Tuning(FT) 1.18
(0.113)

0.806
(0.039)

1.239
(0.084)

0.815
(0.033)

1.090
(0.088)

0.854
(0.024)

0.99
(0.085)

0.884
(0.021)

Values between parentheses are average standard deviation taken across 10 subjects.
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In all cases FT models perform better than SD models → Pooling
data from all subjects helps in learning generic specific mappings
across multiple subjects.
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Results and Discussion

Performance Comparison
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G models vs SD Models → performance for TPHN decreases due to
lack of speaker specific para-linguistic features and in case PHN
features G models perform better than SD due to lack of training data
in SD.
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Results and Discussion

Performance Comparison

Training PHN TPHN MFCC MFCC+TPHN
RMSE CC RMSE CC RMSE CC RMSE CC

Subject-
Dependent (SD)

2.04
(0.109)

0.33
(0.031)

1.243
(0.087)

0.808
(0.033)

1.116
(0.095)

0.844
(0.025)

1.05
(0.086)

0.87
(0.024)

Generic(G) 1.48
(0.098)

0.68
(0.043)

1.44
(0.108)

0.74
(0.046)

1.107
(0.091)

0.849
(0.023)

1.01
(0.083)

0.877
(0.022)

Fine-Tuning(FT) 1.18
(0.113)

0.806
(0.039)

1.239
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Relative improvements from generic to fine-tune model across the
PHN, TPHN, MFCC, and MFCC+TPHN are 18.53%, 9.3%, 0.5%
and 0.8%, respectively.
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Results and Discussion

Discussion
CC across all articulators for each speaker (M1, M2, M3, M4, M5,
M6, F1, F2, F3 and F4):

PHN vs TPHN → performance is nearly same, indicating that timing
information can be recovered from phoneme sequence to estimate
articulatory trajectories using attention.
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Results and Discussion

CC across all articulators for each speaker

MFCC outperforms both PHN and TPHN because articulatory
information is maximally preserved when speech acoustic signal is
processed by auditory filters such as mel-scale.
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Results and Discussion

Illustration of attention weights

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  1.1
time

-20

-10

0

10

20
Ground-Truth Articulators

dh ih s w ah z iy z iy f r er ah s

LL
y

TT
y

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  1.1 1.2
time

0

0.5

1
Alignment weights

dh ih s w ah z iy z iy f r er ah s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  1.1 1.2
time

-20

-10

0

10

20
Predicted Articulators LL

y
TT

y

SPIRE LAB, IISc, Bangalore 26



Results and Discussion

Comparison with [5] on MNGU dataset:

Model Correlation
Random Initialized 0.324

Fine-tuned on top of Generic model 0.778
HMM model 5 0.600

5Zhen-Hua Ling, Korin Richmond, and Junichi Yamagishi, “An analysis of HMM-based prediction of articulatory
movements,” Speech Communication , vol. 52, no. 10, pp. 834–846, 2010.
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Conclusion

Conclusion

Accuracy of estimating articulatory movements from PHN is
comparable to features with timing information (TPHN).
Attention networks are able to learn the timing information to
estimate articulatory movements.
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Conclusion

Future Work

In future, we plan to utilize the estimated articulatory movements in
speech synthesis task and in developing audio-visual speech synthesis
systems.
Analysis on the PHN and TPHN performance with respect to
broad-phoneme classes, and place and manner of articulation.
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Conclusion
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Conclusion

THANK YOU
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Conclusion

Have Questions/Suggestions?
Write to us at spirelab.ee@iisc.ac.in
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