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Abstract

• Adversarial attacks use many steps and random restarts.
• Attacks saturate and explore image space inefficiently.
• Introduce adversarial attacks with coordinate-wise random
step size.

• Better performance at a lower cost.

WITCHcraft: Efficient PGD Attacks with Random Step Size April 17, 2020 2/18



Adversarial Examples

• Adversarial attacks are small perturbations to inputs which
cause pathological model behavior.

• Maximize loss w.r.t. inputs subject to constraints.
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Figure 1: Adversarial attacks against ResNet50 on ImageNet. ImageNet
images have dimensions 224× 224× 3 with pixel values between 0 and 1.
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Adversarial Examples

• FGSM: δ = ϵ sign[∇δL(fθ(x + δ), y)] [GSS14]
• PGD attack: δ ← πϵ[δ + α sign[∇δL(fθ(x + δ), y)]], where πϵ

denotes projection onto the ℓ∞-ball of radius ϵ [Mad+18]
• Restarts from random initializations
• Targeted vs. untargeted
• Whitebox vs. blackbox
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Injecting Randomness into Optimization

Adversarial attacks are a difficult nonconvex optimization, likely
stuck in bad local minima.
Randomness is key to mitigate bad local minima:
• Stochastic optimization algorithms select data points at
random.

• Stochastic preconditioners draw randomized preconditioning
operators.

• Many iterative algorithms restart from random starting points.
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WITCHcraft: Efficient Adversarial Attacks

• Combine the PGD attack with a randomly chosen
coordinate-wise step size.

• Random step size is chosen independently for each entry in
the gradient so that different pixels are perturbed different
amounts with each iteration.

• WITCHcraft still incorporates a random initialization, which
comes at no cost.

• Terminate the algorithm as soon as the attack fools the
classifier.

WITCHcraft: Efficient PGD Attacks with Random Step Size April 17, 2020 6/18



WITCHcraft: Efficient Adversarial Attacks
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Experimental Results

• Evaluate WITCHcraft on a canonical task: attacking the
adversarially robust models introduced in [Mad+18] for
CIFAR-10 and MNIST classification

• WideResNet(34-10) [ZK16] used for CIFAR-10
• CNN with 2 convolutional layers used for MNIST
• Both models adversarially trained using 7-step PGD
• Perturbations on CIFAR-10 and MNIST images are restricted to

ℓ∞-balls of radius 0.031 and 0.3, respectively.
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Comparison to PGD Benchmarks

• Hyperparameters chosen to mirror those used for PGD attacks
on the leaderboards [Mad19a] [Mad19b]

• On CIFAR-10, 20- and 100-step WITCHcraft beat equivalent
PGD attacks (Table 1).

• On MNIST, 100-step WITCHcraft beat both 100- and 500-step
PGD (Table 2).
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Comparison to PGD Benchmarks

Attack CIFAR-10 Aadv
20-step PGD 47.04%
20-step WITCHcraft 45.92%
100-step PGD 45.29%
100-step WITCHcraft 45.20%
20-PGD w/ 10 restarts 45.21%

Table 1: Robust accuracy, Aadv, of various adversarial attacks against the
WideResNet(34-10) model trained on CIFAR-10, and released by the
authors of [Mad+18]. Bolded entries indicate best attack results across
fixed computational complexity. Randomized coordinate-wise learning
rates (WITCHcraft) improve attack effectiveness with a fixed
computational budget.
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Comparison to PGD Benchmarks

Attack MNIST Aadv
100-step PGD 92.52%
100-step WITCHcraft 91.68%
500-step PGD 91.91%
500-step WITCHcraft 91.00%

Table 2: Robust accuracy, Aadv, of various adversarial attacks against the
two-layer CNN model trained on MNIST and released by the authors of
[Mad+18]. Bolded entries indicate the best attack results across fixed
computational complexity. Like we observed for the CIFAR-10 model,
randomized coordinate-wise learning rates improve attack effectiveness
with a fixed computational budget.
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The Effect of Step Size

• How does expected step size affect WITCHcraft and PGD?
• Compare performance of both methods over a range of step
sizes

• On CIFAR-10, our method is somewhat less sensitive to this
parameter, and generally performs better than PGD (Figure 2).

• On MNIST, neither method appears very sensitive, but note
that each accuracy result from our method beats every PGD
result over this range (Figure 3).
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The Effect of Step Size
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Figure 2: Sensitivity plot of a 40-step PGD attack compared with 40-step
WITCHcraft for the CIFAR-10 challenge. We see that the randomized step
size choice outperforms a deterministic step size choice, particularly when
larger step sizes are used.
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The Effect of Step Size
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Figure 3: Sensitivity plot of a 40-step PGD attack compared with 40-step
WITCHcraft. As we observed above for CIFAR-10, we see that randomized
step sizes result in more effective attacks against robust MNIST classifiers.
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Additional Attack Steps

• Examine how quickly the success rates of WITCHcraft and
PGD saturate as the number of attack steps increases.

• For both tasks, WITCHcraft suffers less from diminishing returns
(Figures 4, 5).

• We hypothesize that this is the result of randomness improving
the exploratory power of the attack - the stochastic step size
of WITCHcraft seems to better escape local minima.
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Additional Attack Steps
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Figure 4: Comparison of robust accuracy as we increase the number of
attack steps for WITCHcraft vs. PGD on CIFAR-10. Each reported robust
accuracy is an average of 8 trials. As the number of steps increases,
WITCHcraft outperforms PGD by a progressively wider margin.
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Additional Attack Steps
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Figure 5: Comparison of robust accuracy as we increase the number of
attack steps for WITCHcraft vs. PGD on MNIST. Each reported robust
accuracy is an average of 6 trials. As the number of steps increases,
WITCHcraft outperforms PGD by a progressively wider margin.
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