WITCHcraft: Efficient PGD Attacks with Random Step Size 4

Ping-Yeh Chiang,¹ Jonas Geiping,² Micah Goldblum,¹ Tom Goldstein¹ Renkun Ni,¹ Steven Reich,¹ Ali Shafahi¹

¹University of Maryland, College Park, Maryland, USA tong@cs.umd.edu

²University of Siegen, Siegen, Germany jonas.geiping@uni-siegen.de

April 17, 2020

Abstract

- Adversarial attacks use many steps and random restarts.
- Attacks saturate and explore image space inefficiently.
- Introduce adversarial attacks with coordinate-wise random step size.
- Better performance at a lower cost.

Adversarial Examples

- Adversarial attacks are small perturbations to inputs which cause pathological model behavior.
- Maximize loss w.r.t. inputs subject to constraints.

egyptian cat (28%) traffic light (97%) traffic light (96%) traffic light (80%)

Figure 1: Adversarial attacks against ResNet50 on ImageNet. ImageNet images have dimensions $224 \times 224 \times 3$ with pixel values between 0 and 1.

- FGSM: $\delta = \epsilon \operatorname{sign}[\nabla_{\delta} \mathcal{L}(f_{\theta}(\mathbf{x} + \delta), y)]$ [GSS14]
- PGD attack: $\delta \leftarrow \pi_{\epsilon}[\delta + \alpha \operatorname{sign}[\nabla_{\delta} \mathcal{L}(f_{\theta}(\mathbf{x} + \delta), y)]]$, where π_{ϵ} denotes projection onto the ℓ_{∞} -ball of radius ϵ [Mad+18]
- Restarts from random initializations
- Targeted vs. untargeted
- Whitebox vs. blackbox

Injecting Randomness into Optimization

Adversarial attacks are a difficult nonconvex optimization, likely stuck in bad local minima.

Randomness is key to mitigate bad local minima:

- Stochastic optimization algorithms select data points at random.
- Stochastic preconditioners draw randomized preconditioning operators.
- Many iterative algorithms restart from random starting points.

WITCHcraft: Efficient Adversarial Attacks

- Combine the PGD attack with a randomly chosen coordinate-wise step size.
- Random step size is chosen independently for each entry in the gradient so that different pixels are perturbed different amounts with each iteration.
- WITCHcraft still incorporates a random initialization, which comes at no cost.
- Terminate the algorithm as soon as the attack fools the classifier.

Algorithm 1: The WITCHcraft attack algorithm.

```
Requires: Network f, input \mathbf{x}, label y, permissible perturbation set S, number of steps n, and expected step size parameter a.
```

Initialize perturbation δ with entries distributed

independently according to distribution $\mathcal{U}(S)$.

```
for step = 1,..., n do
```

Sample τ with entries distributed independently according to distribution $\mathcal{U}(0, 2a)$.

 $\delta \leftarrow \Pi_{\mathcal{S}}[\delta + \tau \odot \operatorname{sign}(\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x} + \delta, \operatorname{class}))]$

If $\arg \max(f(\mathbf{x} + \delta)) \neq y$, return $\mathbf{x} + \delta$ and

```
break.
```

- Evaluate WITCHcraft on a canonical task: attacking the adversarially robust models introduced in [Mad+18] for CIFAR-10 and MNIST classification
- WideResNet(34-10) [ZK16] used for CIFAR-10
- CNN with 2 convolutional layers used for MNIST
- Both models adversarially trained using 7-step PGD
- Perturbations on CIFAR-10 and MNIST images are restricted to ℓ_∞ -balls of radius 0.031 and 0.3, respectively.

- Hyperparameters chosen to mirror those used for PGD attacks on the leaderboards [Mad19a] [Mad19b]
- On CIFAR-10, 20- and 100-step WITCHcraft beat equivalent PGD attacks (Table 1).
- On MNIST, 100-step WITCHcraft beat both 100- and 500-step PGD (Table 2).

Attack	CIFAR-10 \mathcal{A}_{adv}
20-step PGD	47.04%
20-step WITCHcraft	45.92%
100-step PGD	45.29%
100-step WITCHcraft	45.20%
20-PGD w/ 10 restarts	45.21%

Table 1: Robust accuracy, A_{adv} , of various adversarial attacks against the WideResNet(34-10) model trained on CIFAR-10, and released by the authors of [Mad+18]. Bolded entries indicate best attack results across fixed computational complexity. Randomized coordinate-wise learning rates (WITCHcraft) improve attack effectiveness with a fixed computational budget.

Attack	MNIST \mathcal{A}_{adv}
100-step PGD	92.52%
100-step WITCHcraft	91.68%
500-step PGD	91.91%
500-step WITCHcraft	91.00%

Table 2: Robust accuracy, A_{adv} , of various adversarial attacks against the two-layer CNN model trained on MNIST and released by the authors of [Mad+18]. Bolded entries indicate the best attack results across fixed computational complexity. Like we observed for the CIFAR-10 model, randomized coordinate-wise learning rates improve attack effectiveness with a fixed computational budget.

- How does expected step size affect WITCHcraft and PGD?
- Compare performance of both methods over a range of step sizes
- On CIFAR-10, our method is somewhat less sensitive to this parameter, and generally performs better than PGD (Figure 2).
- On MNIST, neither method appears very sensitive, but note that each accuracy result from our method beats every PGD result over this range (Figure 3).

The Effect of Step Size

Expected Step Size

Figure 2: Sensitivity plot of a 40-step PGD attack compared with 40-step WITCHcraft for the CIFAR-10 challenge. We see that the randomized step size choice outperforms a deterministic step size choice, particularly when larger step sizes are used.

The Effect of Step Size

Expected Step Size

Figure 3: Sensitivity plot of a 40-step PGD attack compared with 40-step WITCHcraft. As we observed above for CIFAR-10, we see that randomized step sizes result in more effective attacks against robust MNIST classifiers.

- Examine how quickly the success rates of WITCHcraft and PGD saturate as the number of attack steps increases.
- For both tasks, WITCHcraft suffers less from diminishing returns (Figures 4, 5).
- We hypothesize that this is the result of randomness improving the exploratory power of the attack - the stochastic step size of WITCHcraft seems to better escape local minima.

Additional Attack Steps

Number of Steps

Figure 4: Comparison of robust accuracy as we increase the number of attack steps for WITCHcraft vs. PGD on CIFAR-10. Each reported robust accuracy is an average of 8 trials. As the number of steps increases, WITCHcraft outperforms PGD by a progressively wider margin.

Additional Attack Steps

Random Step
Fixed Step

Number of Steps

Figure 5: Comparison of robust accuracy as we increase the number of attack steps for WITCHcraft vs. PGD on MNIST. Each reported robust accuracy is an average of 6 trials. As the number of steps increases, WITCHcraft outperforms PGD by a progressively wider margin.

References I

- [GSS14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples". In: arXiv preprint arXiv:1412.6572 (2014).
- [Mad19a] Aleksander Madry. CIFAR10 Adversarial Examples Challenge. https://github.com/MadryLab/cifar10_challenge. 2019.
- [Mad19b] Aleksander Madry. MNIST Adversarial Examples Challenge. https://github.com/MadryLab/mnist_challenge. 2019.
- [Mad+18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. "Towards Deep Learning Models Resistant to Adversarial Attacks". In: International Conference on Learning Representations. 2018. URL: https://openreview.net/forum?id=rJzIBfZAb.
- [ZK16] Sergey Zagoruyko and Nikos Komodakis. "Wide residual networks". In: arXiv preprint arXiv:1605.07146 (2016).