Conditional Density Driven Grid Design in Point-Mass Filter

Jindřich Duník, **Ondřej Straka**, and Jakub Matoušek ICASSP 2020, May 4–8, 2020

University of West Bohemia Pilsen, Czech Republic

Important for navigation, speech and image processing, fault detection, adaptive and optimal control.

State estimation problem specification:

Consider discrete-time nonlinear stochastic dynamic system with additive noises

$$\begin{aligned} x_{k+1} &= f_k(x_k) + w_k, & k = 0, 1, 2, \dots, T \\ z_k &= h_k(x_k) + v_k, & k = 0, 1, 2, \dots, T \end{aligned}$$

Given a set of measurements $z^k \triangleq [z_0, z_1, \dots, z_k]$ estimate state x_k

Bayesian approach provides the filtering PDF $p(x_k|z^k)$ obtained by

$$p(x_{k}|z^{k}) = \frac{p(x_{k}|z^{k-1})p(z_{k}|x_{k})}{p(z_{k}|z^{k-1})},$$
(Bayes rule)
$$p(x_{k}|z^{k-1}) = \int p(x_{k}|x_{k-1})p(x_{k-1}|z^{k-1})dx_{k-1},$$
(Chapman-Kolmogorov)

- Analytically tractable for few special cases (linear model with Gaussian noises)
- Approximate solutions (Gaussian assumed filters, particle filter)
- Numerical computation of the BRRs Point-Mass filter

- developed in the seventies,
- based on a numerical solution to the BRRs using *deterministic* grid-based numerical integration rules,
- PMF computes the conditional PDFs at the grid points only,
- selection of the grid points is crucial (affects the PMF accuracy and computational complexity).

Point-Mass Density $\hat{p}(\mathbf{x}_k | \mathbf{z}^m; \boldsymbol{\xi}_k), \ m = k - 1, k$

$$\hat{p}(\mathsf{x}_k|\mathsf{z}^m;\boldsymbol{\xi}_k) \triangleq \sum_{i=1}^N P_{k|m}(\boldsymbol{\xi}_k^{(i)}) S\{\mathsf{x}_k;\boldsymbol{\xi}_k^{(i)},\boldsymbol{\Delta}_k\},$$

•
$$P_{k|m}(\xi_k^{(i)}) = p(\xi_k^{(i)}|z^m) / \left(\frac{\delta_k \sum_{j=1}^N p(\xi_k^{(j)}|z^m)}{(i)} \right)$$

•
$$\delta_k$$
 – volume of the *i*-th point $\xi_k^{(i)}$ vicinity,

- $\Delta_k = [\Delta_k(1), \dots, \Delta_k(n_x)]^T$ a hyper-rectangular vicinity of $\xi_k^{(i)}$
- $S\{x_k; \xi_k^{(i)}, \Delta_k\}$ selection function

$$S\{\mathsf{x}_k; \boldsymbol{\xi}_k^{(i)}, \Delta_k\} = egin{cases} 1, & ext{if } |\mathsf{x}_k(j) - \boldsymbol{\xi}_k^{(i)}(j)| \leq rac{\Delta_k(j)}{2}, \ 0, & ext{otherwise}. \end{cases}$$

• $\delta_k = \prod_{i=1}^{n_x} \Delta_k(i) = \int S\{\mathsf{x}_k; \xi_k^{(i)}, \Delta_k\} d\mathsf{x}_k$

Point-Mass Density – Illustration

Initialisation: : Set k = 0, construct the initial grid $\{\xi_0^{(i)}\}_{i=0}^N$, define the initial point-mass PDF $\hat{p}(x_0|z^{-1};\xi_0)$.

Meas. update: Compute the filtering point-mass PDF

$$\hat{p}(x_k | z^k; \xi_k) \text{ where } P_{k|k}(\xi_k^{(i)}) = \frac{p(z_k | x_k = \xi_k^{(i)}) P_{k|k-1}(\xi_k^{(i)})}{\sum_{i=1}^N p(z_k | x_k = \xi_k^{(i)}) P_{k|k-1}(\xi_k^{(i)}) \delta_k}$$

Grid construction: Construct the new grid $\{\xi_{k+1}^{(j)}\}_{j=0}^{N}$.

Time update: Compute the predictive point-mass PDF $\hat{p}(\mathbf{x}_{k+1}|\mathbf{z}^k;\boldsymbol{\xi}_{k+1})$ at the new grid points where $P_{k+1|k}(\boldsymbol{\xi}_{k+1}^{(j)}) = \sum_{i=1}^{N} p(\boldsymbol{\xi}_{k+1}^{(j)}|\mathbf{x}_k = \boldsymbol{\xi}_k^{(i)}) P_{k|k}(\boldsymbol{\xi}_k^{(i)}) \delta_k.$

Set k = k + 1 and continue with **Meas. update**.

Standard Equidistant Grid (SEG) Design

- 1. Set number of grid points N
 - Set volume $P_{\rm vol}$ of the conditional PDF to be approximated.
- 2. Get the mean $\hat{x}_{k|k}$ and covariance matrix $P_{k|k}$ of the filtering point-mass PDF $\hat{p}(x_k|z^k;\xi_k)$.
- 3. Compute *approximate* predictive moments $\hat{x}_{A,k+1|k} \approx E[x_{k+1}|z^k], P_{A,k+1|k} \approx cov[x_{k+1}|z^k].$
- 4. Construct an approximate Gaussian predictive PDF

$$p_{\mathbf{A}}(\mathbf{x}_{k+1}|\mathbf{z}^{k}) = \mathscr{N}\{\mathbf{x}_{k+1}; \hat{\mathbf{x}}_{\mathbf{A},k+1|k}, \mathsf{P}_{\mathbf{A},k+1|k}\},\$$

5. Set the rectangular support ${\mathscr R}$ of the predictive PDF to be approximated by the grid,

 $\int_{\mathscr{R}} p_{A}(\mathsf{x}_{k+1}|\mathsf{z}^{k}) \ d\mathsf{x}_{k+1} \approx P_{\mathrm{vol}} \ (\mathscr{R} \text{ is centered at } \hat{\mathsf{x}}_{A,k+1|k}).$

6. Determine the grid points $\{\xi_{k+1}^{(i)}\}_{i=1}^{N}$ equidistantly covering the region \mathscr{R} .

SEG Illustration

OF WEST BOHEMIA

Standard grid design

- (i) The grid design is based on $\hat{p}(x_{k+1}|z^k;\xi_{k+1})$ only.
- (ii) The support ${\mathscr R}$ is computed assuming a Gaussian PDF.
- (iii) The support ${\mathscr R}$ is equidistantly approximated by the points.

New grid design

- (i) The design respects $\hat{p}(x_{k+1}|z^k;\xi_{k+1})$ and $\hat{p}(x_{k+1}|z^{k+1};\xi_{k+1})$.
- (ii) The support \mathscr{R} could respect non-Gaussian aspects.
- (iii) The part of *R* with significant volume of PDFs should be approximated by a denser grid, whereas the remaining support can be approximated by a sparser grid.

Algorithm of conditional density driven grid (CDDG) design

- 1., 2. Same as in SEG.
 - 3. Compute approximate predictive and filtering moments $\hat{x}_{A,k+1|k}$, $P_{A,k+1|k}$, $\hat{x}_{A,k+1|k+1}$, $P_{A,k+1|k+1}$. *Optionally*, compute higher-order moments.
 - 4. Construct *approximate* predictive and filtering Gaussian PDFs $p_A(x_{k+1}|z^k)$ and $p_A(x_{k+1}|z^{k+1})$, respectively.
 - 5. Set rectangular support ${\mathscr R}$

 $\int_{\mathscr{R}} p(\mathsf{x}_{k+1} \mid \mathsf{z}^k) d\mathsf{x}_{k+1} \geq P_{\mathrm{vol}} \text{ and } \int_{\mathscr{R}} p(\mathsf{x}_{k+1} \mid \mathsf{z}^{k+1}) d\mathsf{x}_{k+1} \geq P_{\mathrm{vol}}.$

- 6. Set predictive and filtering sub-regions \mathscr{R}_{P} and \mathscr{R}_{F} centered at $\hat{x}_{A,k+1|k}$ and $\hat{x}_{A,k+1|k+1} \int_{\mathscr{R}_{P}} p(x_{k+1}|z^{k}) dx_{k+1} \approx c_{P} P_{vol}$ and $\int_{\mathscr{R}_{F}} p(x_{k+1}|z^{k+1}) dx_{k+1} \approx c_{F} P_{vol}$ with $c_{F}, c_{P} \in \langle 0.8, 0.95 \rangle$. Optionally, use higher-order moments to fine-tune \mathscr{R}_{P} and \mathscr{R}_{F} .
- 7. Approximate \mathscr{R}_P and \mathscr{R}_F by a dense grid, and the remaining complement of \mathscr{R} by a sparse grid.

CDDG Illustration

OF WEST BOHEMIA

Numerical Illustration of CDDG-based PMF

Terrain-aided navigation scenario

$$\mathsf{x}_{k+1} = \mathsf{x}_k + \mathsf{u}_k$$

- x_k vehicle horizontal position in north and east directions
- $u_k = [300, 300]^T$ shift vector (from INS or odometer)
- w_k is uncertainty in u_k , $p(w_k) = \mathcal{N}\{w_k; 0_2, 10^2 I_2\}$

$$z_k = h_k(\mathsf{x}_k) + v_k$$

- *z_k* measurement of the terrain altitude below the vehicle (from e.g. barometric altimeter or radar altimeter)
- $h_k(\cdot)$ terrain map connecting the position and the altitude
- v_k sensor reading uncertainty and map error, $p(v_k) = \mathcal{N}\{v_k; 0, 8^2\}$

Trajectory Illustration

Compared Point-Mass Filters

- PMF_{TRUE} with high number of grid points N = 7225 providing "almost true" state estimate $p(x_k|z^k)$,
- PMF_{ST} with the *standard* equidistant allocation with N = 289 providing the conditional PDF $\hat{p}_{ST}(x_k|z^k;\xi_k)$,
- PMF_{CDDG} with the proposed CDDG with N = 286 providing the conditional PDF p̂_{CDDG}(x_k|z^k;ξ_k),
- $M = 10^3$ Monte-Carlo simulations using two criteria;
- (*i*) the filtering PDF integral error $IE = \frac{1}{T+1} \sum_{k=0}^{T} \int |p(x_k|z^k) - \hat{p}(x_k|z^k; \xi_k)| dx_k$ (*ii*) PMF execution time

- state estimation of nonlinear stochastic dynamic systems by the point-mass filter
- novel conditional density driven grid design
- suitable combination of the dense and sparse grids
- significant PMF state estimation improvement while preserving the number of grid points, and thus the computational complexity

Conditional Density Driven Grid Design in Point-Mass Filter

Jindřich Duník, **Ondřej Straka**, and Jakub Matoušek ICASSP 2020, May 4–8, 2020

University of West Bohemia Pilsen, Czech Republic

