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State Estimation

Important for navigation, speech and image processing, fault

detection, adaptive and optimal control.

State estimation problem specification:
Consider discrete-time nonlinear stochastic dynamic system with

additive noises

xk+1 = fk(xk) + wk , k = 0,1,2, . . . ,T

zk = hk(xk) + vk , k = 0,1,2, . . . ,T

Given a set of measurements zk , [z0,z1, . . . ,zk ] estimate state xk



Bayesian Recursive Relations (BRRs)

Bayesian approach provides the filtering PDF p(xk |zk) obtained by

p(xk |zk) =
p(xk |zk−1)p(zk |xk)

p(zk |zk−1)
, (Bayes rule)

p(xk |zk−1) =
∫

p(xk |xk−1)p(xk−1|zk−1)dxk−1, (Chapman-Kolmogorov)

• Analytically tractable for few special cases (linear model with

Gaussian noises)

• Approximate solutions (Gaussian assumed filters, particle

filter)

• Numerical computation of the BRRs – Point-Mass filter



Point-Mass Filter (PMF)

• developed in the seventies,

• based on a numerical solution to the BRRs using deterministic

grid-based numerical integration rules,

• PMF computes the conditional PDFs at the grid points only,

• selection of the grid points is crucial (affects the PMF

accuracy and computational complexity).



Point-Mass Density p̂(xk |zm;ξ k), m = k−1,k

p̂(xk |zm;ξ k) ,
N

∑
i=1

Pk|m(ξ
(i)
k )S{xk ;ξ

(i)
k ,∆k},

• Pk|m(ξ
(i)
k ) = p(ξ

(i)
k |z

m)/
(

δk ∑
N
j=1 p(ξ

(j)
k |z

m)
)

• δk – volume of the i-th point ξ
(i)
k vicinity,

• ∆k = [∆k(1), . . . ,∆k(nx)]T – a hyper-rectangular vicinity

of ξ
(i)
k

• S{xk ;ξ
(i)
k ,∆k} – selection function

S{xk ;ξ
(i)
k ,∆k}=

1, if |xk(j)−ξ
(i)
k (j)| ≤ ∆k (j)

2 ,

0, otherwise.

• δk = ∏
nx
i=1 ∆k(i) =

∫
S{xk ;ξ

(i)
k ,∆k}dxk



Point-Mass Density – Illustration
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Point-Mass Filter Algorithm

Initialisation: : Set k = 0, construct the initial grid {ξ (i)
0 }Ni=0,

define the initial point-mass PDF p̂(x0|z−1;ξ 0).

Meas. update: Compute the filtering point-mass PDF

p̂(xk |zk ;ξ k) where

Pk|k(ξ
(i)
k ) =

p(zk |xk=ξ
(i)
k )Pk|k−1(ξ

(i)
k )

∑
N
i=1 p(zk |xk=ξ

(i)
k )Pk|k−1(ξ

(i)
k )δk

.

Grid construction: Construct the new grid {ξ (j)
k+1}

N
j=0.

Time update: Compute the predictive point-mass PDF

p̂(xk+1|zk ;ξ k+1) at the new grid points where

Pk+1|k(ξ
(j)
k+1) = ∑

N
i=1 p(ξ

(j)
k+1|xk = ξ

(i)
k )Pk|k(ξ

(i)
k )δk .

Set k = k + 1 and continue with Meas. update.



Standard Equidistant Grid (SEG) Design

1. • Set number of grid points N

• Set volume Pvol of the conditional PDF to be approximated.

2. Get the mean x̂k|k and covariance matrix Pk|k of the filtering

point-mass PDF p̂(xk |zk ;ξ k).

3. Compute approximate predictive moments

x̂A,k+1|k ≈ E[xk+1|zk ], PA,k+1|k ≈ cov[xk+1|zk ].

4. Construct an approximate Gaussian predictive PDF

pA(xk+1|zk) = N {xk+1; x̂A,k+1|k ,PA,k+1|k},

5. Set the rectangular support R of the predictive PDF to be

approximated by the grid,∫
R pA(xk+1|zk) dxk+1 ≈ Pvol (R is centered at x̂A,k+1|k).

6. Determine the grid points {ξ (i)
k+1}

N
i=1 equidistantly covering

the region R.



SEG Illustration
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Goal of the Paper

Standard grid design

(i) The grid design is based on p̂(xk+1|zk ;ξ k+1) only.

(ii) The support R is computed assuming a Gaussian PDF.

(iii) The support R is equidistantly approximated by the points.

New grid design

(i) The design respects p̂(xk+1|zk ;ξ k+1) and p̂(xk+1|zk+1;ξ k+1).

(ii) The support R could respect non-Gaussian aspects.

(iii) The part of R with significant volume of PDFs should be

approximated by a denser grid, whereas the remaining support

can be approximated by a sparser grid.



Algorithm of conditional density driven grid (CDDG) design

1., 2. Same as in SEG.

3. Compute approximate predictive and filtering moments

x̂A,k+1|k , PA,k+1|k , x̂A,k+1|k+1, PA,k+1|k+1.

Optionally, compute higher-order moments.

4. Construct approximate predictive and filtering Gaussian PDFs

pA(xk+1|zk) and pA(xk+1|zk+1), respectively.

5. Set rectangular support R∫
R p(xk+1| zk)dxk+1 ≥ Pvol and

∫
R p(xk+1|zk+1)dxk+1 ≥ Pvol.

6. Set predictive and filtering sub-regions RP and RF centered at

x̂A,k+1|k and x̂A,k+1|k+1

∫
RP

p(xk+1|zk)dxk+1 ≈ cPPvol and∫
RF

p(xk+1|zk+1) dxk+1 ≈ cFPvol with cF,cP ∈ 〈0.8,0.95〉.
Optionally, use higher-order moments to fine-tune RP and RF.

7. Approximate RP and RF by a dense grid, and the remaining

complement of R by a sparse grid.



CDDG Illustration
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Numerical Illustration of CDDG-based PMF

Terrain-aided navigation scenario

xk+1 = xk + uk

• xk – vehicle horizontal position in north and east directions

• uk = [300,300]T – shift vector (from INS or odometer)

• wk is uncertainty in uk , p(wk) = N {wk ;02,102I2}

zk = hk(xk) + vk

• zk – measurement of the terrain altitude below the vehicle

(from e.g. barometric altimeter or radar altimeter)

• hk(·) – terrain map connecting the position and the altitude

• vk – sensor reading uncertainty and map error,

p(vk) = N {vk ;0,82}



Trajectory Illustration



Compared Point-Mass Filters

• PMFTRUE with high number of grid points N = 7225 providing

“almost true” state estimate p(xk |zk),

• PMFST with the standard equidistant allocation with N = 289

providing the conditional PDF p̂ST(xk |zk ;ξ k),

• PMFCDDG with the proposed CDDG with N = 286 providing

the conditional PDF p̂CDDG(xk |zk ;ξ k),

M = 103 Monte-Carlo simulations using two criteria;

(i) the filtering PDF integral error

IE = 1
T+1 ∑

T
k=0

∫
|p(xk |zk)− p̂(xk |zk ;ξ k)|dxk

(ii) PMF execution time



Results

PMFTRUE PMFST PMFCDDG

IE – 0.056 0.024

time [sec] 72 11 12



Conclusion

• state estimation of nonlinear stochastic dynamic systems by

the point-mass filter

• novel conditional density driven grid design

• suitable combination of the dense and sparse grids

• significant PMF state estimation improvement while

preserving the number of grid points, and thus the

computational complexity



Conditional Density Driven Grid Design in

Point-Mass Filter
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