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Introduction
In [1] the model considered initially was

Xt = µ + Ae−γt cos (ωt + φ) + εt, t = 0, 1, . . . , T − 1
(1)

whereµ,A > 0, γ > 0, ω andφ are unknown parameters,
and{εt} is some general ‘noise’ process, not necessarily
Gaussian or white. Interest was in the estimation of these
unknown parameters, and their asymptotic properties as
T → ∞. Since the amplitudeAe−γt converges to0 as
T → ∞, the Craḿer-Rao lower bound does not converge
to 0 asT → ∞ and so the estimators are inconsistent.
The model was reparametrized as

Xt = µ+Ae−γt/T cos (ωt + φ)+ εt, t = 0, 1, . . . , T − 1,
(2)

as in [2] in order to avoid this problem. A review of es-
timation techniques was conducted and a generalization
of [3] produced. Although the amplitude of the sinusoid
does not converge to0 asT → ∞, the number of peri-
ods of the sinusoid is linear inT , and therefore diverges
to ∞. In [4], a similar idea is used with model given by
(1) , but at the timest = 0, 1/ (T − 1) , 2/ (T − 1) , . . . , 1,
the number of periods of the sinusoid is fixed, and the s-
tochastic properties of the noise process{εt} thus become
problematic.

In this paper, we propose the following model for the case
of a damped sinusoid

Xt = µ+Ae−γt/T cos (at/T + φ)+εt, t = 0, 1, . . . , T−1
(3)

for which there is a fixed number of sinusoidal periods.
The same idea was used in [5], where limit theory was
established for the least squares estimator of the frequen-
cy of a sinusoid, when the frequency was ‘low’. We de-
rive the asymptotic theory for the least squares estimators
of the parameters. We then propose Fourier transform
estimators ofγ anda. A special case is that ofa = 0,
i.e. a purely exponential signal. The Fourier transform
technique outperforms least squares from the computa-
tional point of view, and has very similar asymptotics.
The technique is generalized to a broad class of nonlin-
ear functions, using a more general class of transforms.
Simulations are performed to evaluate the accuracy of the
asymptotics in relatively small samples.

Least squares and the Gaussian
CRLB

[5] examined(3) when γ = 0. The least squares pro-
cedure was defined and analyzed imposing only weak
conditions on{εt} . In particular, Gaussianity and white-
ness are not needed for the parameter estimators to sat-
isfy a central limit theorem, which depends on{εt} on-
ly through its spectral densityf (ω) at 0 frequency. The
derivation of the central limit theorem is complicated by
the fact that(3) hasthree sinusoidal terms that ‘interfere’
with each other, at frequencies−a/T, 0 anda/T. In [6]
it is shown thatT 1/2 (âT − a) is asymptotically normal
with mean0 and variance of the form

48πf (0)

A2

(
ξ cos2ψ + ζ sin2ψ

)
,

whereξ andζ depend only ona andψ = φ + a/2. Here
we rewrite the model as

Xt = ν + α
{
e−γt/T cos (at/T )− c

}

+ β
{
e−γt/T sin (at/T )− s

}
+ εt,

ν = µ− αc− βs, c + js = T−1
T−1∑

t=0

e(ja−γ)t/T .

We thus minimize with respect toν, α, β anda,

S (ν, α, β, a, γ) =
T−1∑

t=0

[
Xt − ν − α

{
e−γt/T cos (at/T )− c

}

−β
{
e−γt/T sin (at/T )− s

}]2
. (4)

Now for fixed a andγ, S is minimized with respect to
ν, α andβ whenν = X = T−1∑T−1

t=0 Xt and
[
α
β

]
=

[
D11 D12
D12 D22

]−1 [
C1
C2

]

where
[
C1
C2

]
=

[∑T−1
t=0

(
Xt −X

)
e−γt/T cos (at/T )∑T−1

t=0

(
Xt −X

)
e−γt/T sin (at/T )

]
,



D11
D12
D22


 =




∑T−1
t=0 e−2γt/T cos2 (at/T )− Tc2∑T−1

t=0 e−2γt/T cos (at/T ) sin (at/T )− Tsc∑T−1
t=0 e−2γt/T sin2 (at/T )− Ts2




The least squares procedure is then the same as maximiz-
ing

P (a, γ) =
[
C1 C2

] [D11 D12
D12 D22

]−1 [
C1
C2

]
.

The elements ofD may be asymptotically approximated.
The (asymptotic) Craḿer-Rao bounds under Gaussian as-
sumptions are computed in the appendix of the paper. In
fact, these are also the asymptotic variances in the cen-
tral limit theorem even under non-Gaussian and colored
noise assumptions. The fixed-frequency case has been
discussed in [2, 7, 1].

Fourier coefficient technique
Let

Yk =
T−1∑

t=0

Xte
−j2πkt/T , Uk =

T−1∑

t=0

εte
−j2πkt/T .

Yk = Tµδ0k +D
1− e−γ+ja

1− e−(γ−ja+2πjk)/T

+D∗ 1− e−γ−ja

1− e−(γ+ja+2πjk)/T
+ Uk,

whereD = Aejφ/2 and δij is Kronecker’s delta. Un-
like the fixed frequency case,D∗ is of the same order
asD. As in [3], suppose thata = 2π (n + δ) , where
δ ∈ (−1/2, 1/2) . Then, althoughn is unknown, it may
be shown that, ifn > 0,

argmax1≤k≤⌊(T−1)/2⌋ |Yk|
2 → n,

a.s. asT → ∞, and be used to estimaten. If |δ| = 1/2,
the limit points are the set{n− 1, n, n + 1} , but this will
not matter, for the same reason as in [6]. Assume first that
a > 3π. Then fork = −1, 0, 1 andn ≥ 2,

Yn+k = D
1− e−γ+2πjδ

1− e−(γ−2πjδ+2πjk)/T

+D∗ 1− e−γ−2πjδ

1− e−(γ+2πjδ+4πjk)/T
+ Un+k.

As in [3], solving the equations

Yn+1 = D
1− e−γ+2πjδ

1− e−(γ−2πjδ+2πj)/T

+D∗ 1− e−γ−2πjδ

1− e−(γ+2πjδ+4πj)/T

Yn = D
1− e−γ+2πjδ

1− e−(γ−2πjδ)/T
+D∗ 1− e−γ−2πjδ

1− e−(γ+2πjδ)/T

yields one set of estimators ofD, γ andδ, since the equa-
tions above represent four (real) equations in four (real)
unknowns. Solving

Yn−1 = D
1− e−γ+2πjδ

1− e−(γ−2πjδ−2πj)/T

+D∗ 1− e−γ−2πjδ

1− e−(γ+2πjδ−4πj)/T

Yn = D
1− e−γ+2πjδ

1− e−(γ−2πjδ)/T
+D∗ 1− e−γ−2πjδ

1− e−(γ+2πjδ)/T

gives another. There appear to be no closed-form for-
mulae for solving the equations, or choosing between the
two sets of solutions, even if asymptotic versions of the
equations are used. Moreover, whena ≤ 3π, Y0 cannot
be used, as it involvesµ, and is also real. ThusY1 andY2
need to be used whena < 5π.

A special case:a = 0

Whena = φ = 0, we have

Yk = Tµδ0k + A
1− e−γ

1− e−(γ+2πjk)/T
+ Uk.

We may thus estimateγ by solving

Y1 = A
1− e−γ

1− e−(γ+2πj)/T
,

which reduces to

Re (Y1)

Im (Y1)
=

Re

(
1−e−(γ−j2π)/T

|1−e−(γ+j2π)/T |
2

)

Im

(
1−e−(γ−j2π)/T

|1−e−(γ+j2π)/T |
2

) =
1− e−γ/T cos (2π/T )

e−γ/T sin (2π/T )
,

for which the solution is

γ = γ̂T = T log

(
cos (2π/T )−

Re (Y1)

Im (Y1)
sin (2π/T )

)

∼ −2πRe (Y1) / Im (Y1) . (5)

The estimator̂γT is remarkably simple, and certainly much
faster to compute than the nonlinear least squares estima-
tor, found by minimizing with respect toµ,A andγ,

T−1∑

t=0

{
Xt − µ− Ae−γt/T

}2
,

or equivalently by maximizing with respect toγ
{∑T−1

t=0

(
Xt −X

)
e−γt/T

}2

∑T−1
t=0 e−2γt/T − T−1

(∑T−1
t=0 e−γt/T

)2

Generalization
Suppose we wish to fit

Xt = µ + βf (γt/T ) + εt, t = 0, 1, . . . , T − 1

where{εt} is ‘noise’ andf is known. Let{gk (x)} be
a family of functions whose domains are[0, 1], and put
Yk =

∑T−1
t=0 Xtgk (t/T ). As long as{gk (x)} is suitably

well-behaved,

var



T

−1/2
T−1∑

t=0

εtgk (t/T )



 → 2πf (0)

∫ 1

0
g2k (x) dx.

Thus, at least in probability asT → ∞,

T−1Yk → µ

∫ 1

0
gk (x) dx + β

∫ 1

0
gk (x) f (γx) dx

= µGk + βHk (γ) ,

say. For fixedγ, we might thus estimateµ andβ by solv-
ing the above equation fork = 0, 1, i.e. by finding zeros
of

κ (γ) = (G0Y1 −G1Y0)H2 (γ) + (G2Y0 −G0Y2)H1 (γ)

+ (G1Y2 −G2Y1)H0 (γ) . (6)

For example, supposef (x) = e−x, g0 (x) = 1 and

gk (x) =

{
cos (ax) ; k = 1
sin (ax) ; k = 2.

ThenG0 = 1,

Gk =

{
sin a /a ; k = 1

(1− cos a) /a ; k = 2,

H0 (γ) =
(
1− e−γ

)
/γ

H1 (γ) =
(
γ − γ cos a e−γ + a sin a e−γ

)
/
(
a2 + γ2

)

H2 (γ) =
(
a− a cos a e−γ − γ sin a e−γ

)
/
(
a2 + γ2

)
.

Whena = 2nπ, n an integer,Gk = δ0k,

H0 (γ) =
(
1− e−γ

)
/γ

H1 (γ) = γ
(
1− e−γ

)
/
(
4n2π2 + γ2

)

H2 (γ) = 2nπ
(
1− e−γ

)
/
(
4n2π2 + γ2

)

κ (γ) = (γY1 − 2nπY2)
(
1− e−γ

)
/
(
4n2π2 + γ2

)
.

γ̂T is thus2nπY2/Y1, agreeing with(5) when n = 1.
Generally zeros ofκ (γ) must be found by an iterative
procedure. In any case,̂γT converges a.s. toγ, and
T 1/2 (γ̂T − γ) is asymptotically normal with mean0. When
a = 2nπ, n an integer, the asymptotic variance is

πf (0)
1 +

{
H2(γ)
H1(γ)

}2

{
− d
dγH2 (γ) +

H2(γ)
H1(γ)

d
dγH1 (γ)

}2
.

Simulations
Only a few results for thea = 0 case are reported. There
were 5000 replications for each combination of param-
eters, and the noise was simulated Gaussian and white.
Figure 1 shows that the theoretical and simulated, least
squares and Fourier estimates are all in close agreement.
The mean square errors initially decrease asγ increases,
but then increase, the least squares estimates better at low
and high values ofγ. Figures 2 and 3 show that there is a
threshold effect for fixedγ with decreasing SNR.

γ
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Fig 1. MSE for fixedσ as function ofγ
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Fig 2. MSE for fixedγ as a function ofσ
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Fig 3. MSE for fixedγ as a function ofσ
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