sinusolids and exponentials

Barry Quinn, Macquarie University

Introduction
- —~t/T _ ,—y+2mj0
In [1] the model considered initially was At =v+ta {6 VT cos (at/T) - C} Y, =D e~
—~t)T . 1 — o~ (y—2mjo+2mjk)/T
Xi=p+Ae Veos(wt+¢)+ep, t=0,1,...,7T —1 +B{e Sln(at/T)_3}+5tv ) 1 — e~ Y—27J0
(1) -1 + T —(yt2njordmik)T Un-tk

wherey, A > 0,7 > 0,w and¢ are unknown parameters, v=p—ac—Bs,ctjs=T"1% o, | | |

and{e;} is some general ‘noise’ process, not necessarily t=0 As In [3], solving the equations

Gaussian or white. Interest was In the estimation of _theseWe thus minimize with respect ta a, 8 anda, 1 — =Y +2mj0

unknown parameters, and their asymptotic properties as Ypi1 = Dl — (—2rjor2m )T

T — oo. Since the amplitudele™"* converges td as 1=l )T 61 o ——9mjb

T — oo, the Cranér-Rao lower bound does not converge © (v, 53,a,7) = [Xt —V—« {6 cos (at/T') — C} + D* ‘ S P

to 0 as7 — oo and so the estimators are inconsistent. =0 1 — e~ (yi2mjorimj)/ .
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Xe=p+Ae 7 cos(wt + @) +e, t=0,1,...,T—1, Now for fixed e and~, S is minimized with respect to

2 ' —1 71 yields one set of estimators &f, v andd, since the equa-
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as in [2] in order to avoid this problem. A review of es- 1
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timation techniques was conducted and a generalization unknowns. Solving

of [3] produced. Although the amplitude of the sinusoid D19 Dy C 1 — eV 2mj0
does not converge toas’' — oo, the number of peri- H Yp—1= Dl — o—(—2mjo—2mj)]T
ods of the sinusoid is linear (A, and therefore diverges where ] ) | _ p——2mjd
to co. In [4], a similar idea Is used with model given by 4 Z?:_ol ( X; — Y) e~ VT ¢os (at/T) + D* o e Sy
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In this paper, we propose the following model for the case - 2= L D0 € sin® (at/T') = T's mulae for solving the equations, or choosing between the

of a damped sinusoid The least squares procedure is then the same as maximiz-

equations are used. Moreover, wher< 3w, Y; cannot

in

Xt = u+Ae_7t/T cos (at/T + ¢)+er, t=0,1,...,T—1 J be used, as it involves, and is also real. Thugs; andY5
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for which there Is a fixed number of sinusoidal periods. D15 Dy CH A special cases = 0

The same idea was used In [5], where limit theory was

established for the least squares estimator of the frequen _ ! ,
The (asymptotic) Craer-Rao bounds under Gaussian as- \Wheng = ¢ = (), we have

cy of a sinusoid, when the frequency was ‘low’. We de- _ 4 in th dix of th
rive the asymptotic theory for the least squares estimatorsSUMPtions are computed in the appendix of the paper. In

of the parameters. We then propose Fourier transformfaﬁt’l_th_esﬁ are also the azymptotlc variances ”; thel ceg- Y, = Tubyy + Al
estimators of, anda. A special case is that of — 0. tral limit theorem even under non-Gaussian and colore _

.e. a purely exponential signal. The Fourier transform NOIS€ assumptions. The fixed-frequency case has beefye may thus estimate by solving
technique outperforms least squares from the computa-discussedin (2,7, 1]

tional point of view, and has very similar asymptotics. F0urier COeﬂ:iCient teChnique

The technique is generalized to a broad class of nonlin-
ear functions, using a more general class of transforms.

The elements oD may be asymptotically approximated.
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cedure was defined and analyzed imposing only weak LD 1 —e 77" LU, v =7 = T'log (COS (27 /T) — o (V1) sin (27T/T)>
» . e - T ,
conditions on{s;} . In particular, Gaussianity and white 1 — e—(VHjat2mjk)/ ~ —27Re (Y]) /Tm (V). (5)

ness are not needed for the parameter estimators to sat- i . ,
isfy a central limit theorem, which depends é1}} on- whereD = Ae/?/2 and¢;; is Kronecker's delta. Un-

ly through its spectral densitf (w) at 0 frequency. The like the fixed frequency case)” is of the same order
derivation of the central limit theorem is complicated by &S D- AS In [3], suppose that = 27 (n +9), where

_ , tor, found by minimizing with respect to, A and~,
the fact thai3) hasthree sinusoidal terms that ‘interfere’ 0 € (—1/2,1/2). Then, although: is unknown, it may
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with each other, at frequenciesz/7T’,0 anda/T. In [6] be shown that, i > 0, i {X - Ae—vt/T}Q
it is shown that7!/2 (ap — a) is asymptotically normal ALGINAN, < o< | (7_1) /2| |Yk|2 n 2 t— M :

with mean0 and variance of the form

487;];(0) (f cos” P + Csin2 w) :

whereé and( depend only o andy = ¢ + a/2. Here
we rewrite the model as

or equivalently by maximizing with respect to
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a.s. asl’ — oo, and be used to estimate If |6] = 1/2,

the limit points are the sdtn — 1,n,n + 1}, but this will

not matter, for the same reason as in [6]. Assume first that
a > 3mw. Then fork = —1,0,1 andn > 2,

Estimating parameters in noisy low frequency exponenNt@amped

tions above represent four (real) equations in four (real)

._two sets of solutions, even if asymptotic versions of the

The estimatofty; is remarkably simple, and certainly much
faster to compute than the nonlinear least squares estima-
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Generalization 6
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+ Least Squares Estimates
X Fourier Estimates
Theoretical Asymptotic Variance Least Squares
—— Theoretical Asymptotic Variance Fourier technique

Suppose we wish to fit of

Xy =p+ Bf(vt)T) +ept =0,1,...,T —1

where{e;} is ‘noise’ andf is known. Let{g; (x)} be
a family of functions whose domains alfe 1], and put

Y. = ZtT:_Ol Xigp. (t/T). As long as{g;. (x)} is suitably
well-behaved,

;
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\ t=0 ) . Fig 1. MSE for fixeds as function ofy

Thus, at least in probability as — oo,
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say. For fixedy, we might thus estimate andj by solv-
Ing the above equation fdr = 0, 1, I.e. by finding zeros
of

K (v) = (GoY1 — G1Y)) Ha () + (G2Yy — GoYa) Hy (1) o
+ (G1Yy — GaY1) Hy (7). (6) T T TR R

Fig 2. MSE for fixedy as a function ot

For example, supposg(z) = e %, go(x) = 1 and

p=1b=1~v=1,T=1000

: k — 2. + Least Squares Estimates
X Fourier Estimates +
Theoretical Asymptotic Variance Least Squares

ThenGy =1,

S
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Whena = 2n7, n an integerG. = dgp. Fig 3. MSE for fixedy as a function ot
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