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• Speech Emotion Recognition (SER) has several applications 

• man-machine interactions

• human health assistance

• call center analytics etc.
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• Speech Emotion Recognition (SER) has several applications 

• man-machine interactions

• human health assistance

• call center analytics etc.

• Developments in deep learning especially in terms of,

• data augmentation

• better feature extractors

• cross-domain knowledge transfer

have significantly impacted SER.

• Can be further improved by exploiting,

➢ Acoustic information : Spectrograms from raw audio and glottal source signals

➢ Linguistic information : Text, Phoneme sequences, intermediate DNN representations
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Two directions :

➢ Use complex hand-crafted features (ex: OpenSMILE feature set)

➢ Deep modelling with conventional raw audio spectrograms
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Transferring knowledge within tasks/datasets[1]

⚫ In Deep networks,

❑ initial layers  ➔ low-level features

❑ final layers    ➔ high-level features

⚫ Transfer learning ➔ share knowledge across 

datasets and tasks.

[1] https:/ /haythamfayek.com/assets/talks/Fayek_neurips18.pdf

https://haythamfayek.com/assets/talks/Fayek_neurips18.pdf
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Transferring knowledge within tasks/datasets[1]

⚫ In Deep networks,

❑ initial layers  ➔ low-level features

❑ final layers    ➔ high-level features

⚫ Transfer learning ➔ share knowledge across 

datasets and tasks.

⚫ Objective : Maximum knowledge transfer, 

minimum dependency on parent task/dataset.

“Low-level features are more generic and easier to transfer from one task to another” 

Could there be exceptions?



Jointly learning supplementary tasks [2]

⚫ Uncertainty about most relevant and robust 

features/layers 

⚫ Progressive network : training ASR and SER 

tasks jointly

⚫ ASR representations show improved 

performance mainly due to the robustness to 

speaker and condition variations.

[2] https://www.aclweb.org/anthology/I17-1043.pdf
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Jointly learning supplementary tasks [2]

⚫ Uncertainty about most relevant and robust 

features/layers 

⚫ Progressive network : training ASR and SER 

tasks jointly

⚫ ASR representations show improved 

performance mainly due to the robustness to 

speaker and condition variations.

Key Takeaways from related work: 

❑ Influence of linguistic knowledge in spoken 

utterances for SER task still remains 

unexplored.

❑ Selection of intermediate ASR layers needs to 

be studied thoroughly.

[2] https://www.aclweb.org/anthology/I17-1043.pdf
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Acoustic features : Mel-spectrogram

• Sampling rate = 16 kHz

• Frame duration = 25 msec

• Length of FFT window = 2048

• Hop length = 400 samples

• Number of bins on mel-scale = 128

Concatenate ∆ and ∆- ∆ for the mel-spectrogram. 
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DeepSpeech–1 architecture
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[3] Mozilla, “DeepSpeech–0.4.0,”https://github.com/mozilla/DeepSpeech/releases, January 2019

[4] Swapnil B, Imran S, Sunil K, “End-to-End spoken language understanding: Bootstrapping in low resource scenarios,” Interspeech 2019.  



DeepSpeech–1 architecture

[3] Mozilla, “DeepSpeech–0.4.0,”https://github.com/mozilla/DeepSpeech/releases, January 2019

[4] Swapnil B, Imran S, Sunil K, “End-to-End spoken language understanding: Bootstrapping in low resource scenarios,” Interspeech 2019.  
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Visualization of activations from different layers of DeepSpeech model, for the same utterance spoken in different 

emotions. Columns represent the 6 layers and rows represent emotions. anger; fearful; happy; calm; sad

• 1st , 2nd and 5th layers show least correlation across the rows (emotions).

• Lesser correlation in 1st and 2nd layer is due to variations in speaker, gender etc.[4]

• We use the output from the 5th layer for getting the linguistic context for the SER 

task.
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Proposed Encoder – Decoder model architecture

Encoder : 

• 2 layers of 1-D convolutions.

➢ Helps to learn temporal context 

between adjacent frames.

• 1-D convolution layer 

➔ Batch normalization layer 

➔ ReLU activation

Decoder :

• Multi-head self attention layer 

➔ Average pooling 

➔ 2 feedforward dense layers.

Output : 

Softmax distribution over individual emotions.
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• Let E be the output of the encoder block

• Wi are trainable weight matrices

• di is the dimension 

• Ai : Attention weight of a single head

• AMH : Final multi-head self attention

• h : total number of heads

ICASSP 2020                               Deep encoded Linguistic and Acoustic cues for SER 17



• Let E be the output of the encoder block

• Wi are trainable weight matrices

• di is the dimension 

• Ai : Attention weight of a single head

• AMH : Final multi-head self attention

• h : total number of heads

ICASSP 2020                               Deep encoded Linguistic and Acoustic cues for SER 18

Var. Dim.

Ei [t X dE]

Qi [t X dQ]

Ki [t X dK]

QiKi
T [t X t ]

Vi [t X dV]

(QiKi
T)Vi [t X dV]



Model configurations : Model-1, Model-2, Model-3

• Dataset : IEMOCAP[5]

• Recording setups :  2 { Improvised speech, scripted play }

• Categorical Emotion classes : 4  { anger, happiness, neutral, sadness }

• Model configurations :
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Model (Input features) Weighted Acc., 

WA

Unweighted Acc., 

UA

Yenigalla et al.,2018 [6] (only spectrogram) 71.3 61.6

Satt et al., 2017 [7] 68.8 59.4

Lee et al., 2015 [8] 63.8 62.85

Model - 1 (acoustic) 72.08 58.53

Model - 1 (downsampling + ensembling) 70.05 63.27

Model - 2 (linguistic) 69.56 54.62

Model - 3 (fusion) 72.34 58.31

Observation : 

• Improvement using only Acoustic features  ✓

• Improvement using Linguistic features (or +Acoustic features) 

[6] Promod Yenigalla, “Speech emotion recognition using spectrogram & phoneme embedding,”. Interspeech 2018

[7] Aharon Satt, “Efficient emotion recognition from speech using deep learning on spectrograms ,”. Interspeech 2017

[8] Jinkyu Lee, “High-level feature representation using recurrent neural network for speech emotion recognition,”. Interspeech 2015
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Reasoning : Improvised recordings carry less linguistic correlations and capture 

emotion representative characteristics mostly in acoustic space.
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Observation : 

• Improvement using only Acoustic features  ✓

• Improvement using Linguistic features (or +Acoustic features) 

Reasoning : Improvised recordings carry less linguistic correlations and capture 

emotion representative characteristics mostly in acoustic space.

What if there is linguistic context embedded within the samples?
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Model (Input 

features)

Weighted Accuracy, 

WA

Unweighted 

Accuracy, UA

Model - 1 (acoustic) 63.04 52.73

Model - 2 (linguistic) 68.56 60.37

Model - 3 (fusion) 67.12 59.02

Experiments with scripted recordings
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Model (Input 

features)

Weighted Accuracy, 

WA

Unweighted 

Accuracy, UA

Model - 1 (acoustic) 63.04 52.73

Model - 2 (linguistic) 68.56 60.37

Model - 3 (fusion) 67.12 59.02

Experiments with scripted recordings

Observation : 

• Improvement using only Linguistic features  ✓

• Improvement using Acoustic features (or + Linguistic features) 

Reasoning : Utterances in different sessions but belonging same emotions have similar 

linguistic content.

➢ 7.64% improvement compared to “only acoustic features” as input.

What if the data itself has a combination of both scripted and improvised speech ?

ICASSP 2020                               Deep encoded Linguistic and Acoustic cues for SER 25



Model (Input features) Weighted 

Accuracy, WA

Unweighted 

Accuracy, UA

Model - 1 (acoustic) 70.82 55.53

Model - 2 (linguistic) 62.03 51.96

Model - 3 (fusion) 65.05 58.39

Model - 3 (downsampling + ensembling) 68.11 63.15

Experiments with scripted + improvised recordings

Observation : 

• Improvement using Acoustic + Linguistic features  ✓

• Improvement using Acoustic features or only Linguistic features 
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• Model -1 achieves best WA but very low UA

• Fusion of linguistic information + acoustic features -> + 2.89% in UA
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Model (Input features) Weighted 

Accuracy, WA

Unweighted 

Accuracy, UA

Model - 1 (acoustic) 70.82 55.53

Model - 2 (linguistic) 62.03 51.96

Model - 3 (fusion) 65.05 58.39

Model - 3 (downsampling + ensembling) 68.11 63.15

Experiments with scripted + improvised recordings

Observation : 

• Improvement using Acoustic + Linguistic features  ✓

• Improvement using Acoustic features or only Linguistic features 

Reasoning :

• Class imbalance in the combined scenario plays important role

• Model -1 achieves best WA but very low UA

• Fusion of linguistic information + acoustic features -> + 2.89% in UA

But, is the self-attention module actually helping?
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• Model learns the acoustically 

significant frames and weighs 

them heavily during the 

formation of context.

• Strong emphasis around the 

word “everything” makes it 

almost distinctive as anger 

emotion.

• Not all heads contribute equally, 

most important and confident 

heads play a consistent role. 

Attention weights (a T X T matrix) for each attention head. 

T : timesteps, True emotion : anger
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• Proposed an End-to-End model for an improved SER system using self attention 

mechanism.
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• Proposed an End-to-End model for an improved SER system using self attention 

mechanism.

• Less correlation of linguistic cues with the emotion than its acoustic counterpart in the 

improvised recordings.

• Combination of linguistic and acoustic features gives an improvement of 

• 6.29% for only scripted 

• 2.86% for combined scenario

indicating usefulness of our approach.
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