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Introduction

Problem 1

Solve

y = Ax, x ∈ {0, 1}n, x sparse

given

y ∈ Rm, A ∈ Rm,n, m < n

Applications

• digital communications

• digital image processing

• source separation

• localization

• operations research, e.g., knapsack problem
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Introduction

Problem 1

y = Ax, x ∈ {0, 1}n, x sparse , y ∈ Rm, A ∈ Rm,n, m < n

Properties

Compressed sensing problem
Boolean (0/1) optimization problem

}
⇒ Binary compressed sensing

Literature

• A. Flinth and G. Kutyniok, “PROMP: A sparse recovery approach to lattice-valued
signals”, Appl. Comput. Harmon. Anal., 2018

• S. Fosson, “Non-convex approach to binary compressed sensing”, Asilomar Conf., 2018
(RWR: `1-reweighting algorithm for local minimization)

S. Fosson - Recovery of binary sparse signals from compressed linear measurements via polynomial optimization - 4/11



1 Introduction: recovery of binary sparse signals from compressed linear measurements

2 Proposed approach and theoretical results

3 Numerical results

4 Conclusions and future work

S. Fosson - Recovery of binary sparse signals from compressed linear measurements via polynomial optimization - 4/11



Polynomial optimization approach

Problem 1: binary compressed sensing

y = Ax, x ∈ {0, 1}n, x sparse , y ∈ Rm, A ∈ Rm,n, m < n

Problem 2: polynomial optimization (POP)

min
x∈[0,1]n

n∑
i=1

(
xi − x2i

)
s. t. y = Ax

Proposition

Let us assume that the solution z ∈ {0, 1}n to Problem 1 is unique. Then, z is the
unique solution to Problem 2, for any m ≥ 1.
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How to solve Problem 2?

Problem 2

min
x∈[0,1]n

n∑
i=1

(
xi − x2i

)
s. t. y = Ax

• Problem 2 is non-convex

• Lasserre’s polynomial theory: the global minimum can be found by solving a
hierarchy of semidefinite programs (SDPs) → convex

Proposition

The global minimum of the first order SDP (= Shor’s relaxation) of Problem 2 is the
global minimum of Problem 2. The global minimizer can be extracted if the solution of
the SDP has rank 1.
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Complexity reduction via chordal sparsity

• x n-dimensional → SDP n2-dimensional
• Chordal sparsity: if the graph that represents the sparsity pattern of the SDP

matrices is chordal, then the SDP can be decomposed into smaller sub-problems
⇒ reduces the complexity
• Chordal sparsity ↔ running intersection property

Y. Zheng et al. “Chordal decomposition in operator-splitting methods for sparse semidefinite

programs”, Math. Progamm., 2019 → CDCS: Cone decomposition conic solver (Matlab)

min
x∈[0,1]n,θ∈Rm,n−1

n∑
i=1

(
xi − x2i

)
s. t., for each i = 1 . . . ,m,

yi − Ai ,1x1 + θi ,1 = 0

−Ai ,2x2 − θi ,1 + θi ,2 = 0

...

−Ai ,nxn − θi ,n−1 = 0
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Noisy case

Problem 3: noisy binary compressed sensing

y = Ax + ε, x ∈ {0, 1}n, y ∈ Rm, A ∈ Rm,n, m < n

Noise ε ∈ Rm with ‖ε‖∞ ≤ η

Problem 4: polynomial optimization (POP)

min
x∈[0,1]n

n∑
i=1

(
xi − x2i

)
s. t. ‖Ax− y‖∞ ≤ η

In the noisy case as well we can apply
• SDP relaxation
• Chordal sparsity
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Noise-free experiment n = 100,m ∈ [20, 50]
POP: Exact recovery rate
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RWR: Exact recovery rate
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PROMP: Exact recovery rate
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POP: Run time (sec)
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Noisy experiment n = 100,m ∈ [20, 50], η = 0.05
POP: Exact recovery rate
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RWR: Exact recovery rate
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PROMP: Exact recovery rate
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POP: Run time (sec)
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Conclusions and future work

Conclusions
• We propose a (non-convex) polynomial approach to binary compressed sensing
• The effectiveness of the proposed method leverages on Lasserre’s polynomial

optimization theory
• An enhancement is obtained with respect to state-of-the-art binary compressed

sensing algorithms

Future work
• further reduction of numerical complexity
• extension to non-binary alphabets
• extension to non-sparse mixed-integer problems, e.g., knapsack problems

Questions? → sophie.fosson@polito.it

https://sites.google.com/site/sophiefosson/
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