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Introduction

Problem 1

Solve

y=Ax, xec{0,1}", x sparse

given
yeR™ AeR™ m<n

Applications
® digital communications
® digital image processing
® source separation
® |ocalization
® operations research, e.g., knapsack problem
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Introduction

Problem 1

y=Ax, xe{0,1}", xsparse, yec R™, AcR™", m<n

Properties

Compressed sensing problem

Boolean (0/1) optimization problem } = Binary compressed sensing

Literature

® A. Flinth and G. Kutyniok, “PROMP: A sparse recovery approach to lattice-valued
signals”, Appl. Comput. Harmon. Anal., 2018

® S. Fosson, “Non-convex approach to binary compressed sensing”, Asilomar Conf., 2018
(RWR: /;-reweighting algorithm for local minimization)

Recovery of binary sparse signals from compressed linear measurements via polynomial optimization




@® Proposed approach and theoretical results

Recovery of binary sparse signals from compressed linear measurements via polynomial optimization




Polynomial optimization approach

Problem 1: binary compressed sensing

y=Ax, x€{0,1}", xsparse, ye R", Ac R™", m<n

Problem 2: polynomial optimization (POP)

n

min Z(x,-—x,z) s. t. y=Ax

1 n
x€[0,1] =

\

Proposition

Let us assume that the solution z € {0,1}" to Problem 1 is unique. Then, z is the
unique solution to Problem 2, for any m > 1.
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How to solve Problem 27

Problem 2

® Problem 2 is non-convex
® | asserre's polynomial theory: the global minimum can be found by solving a
hierarchy of semidefinite programs (SDPs) — convex

Proposition
The global minimum of the first order SDP (= Shor's relaxation) of Problem 2 is the
global minimum of Problem 2. The global minimizer can be extracted if the solution of

the SDP has rank 1.
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Complexity reduction via chordal sparsity

e x n-dimensional — SDP n?-dimensional

® Chordal sparsity: if the graph that represents the sparsity pattern of the SDP
matrices is chordal, then the SDP can be decomposed into smaller sub-problems
= reduces the complexity

® Chordal sparsity <> running intersection property

Y. Zheng et al. “Chordal decomposition in operator-splitting methods for sparse semidefinite
programs”, Math. Progamm., 2019 — CDCS: Cone decomposition conic solver (Matlab)

n

min Z(x,-—x,?) s. t., foreach i=1..., m,
x€[0,1]" geRm =1 £

yi—Aiixi+6;1=0
—Aioxp —0;1+0i2=0

*Ai,nxn - ei,n—l =0
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Noisy case

Problem 3: noisy binary compressed sensing

y=Ax+e, x€{0,1}", yecR™, AcR™" m<n

Noise € € R™ with ||€|lcc <7

Problem 4: polynomial optimization (POP)

n

xen[woiglnz (xi —x7) s. t. |[Ax—ylloo <7

i=

In the noisy case as well we can apply
® SDP relaxation
® Chordal sparsity
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Noise-free experiment n = 100, m € [20, 50]

POP: Exact recovery rate

POP: Run time (sec)
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Noisy experiment n = 100, m € [20, 50],» = 0.05

POP: Exact recovery rate

50 1
g 08
£
g 40 06
5
&
GE’ 3 0.4
°© 0.2
£
5
z 0
30 40
Sparsity
RWR: Exact recovery rate 1
2 08
s
£
2 0.6
5
8
0E> 0.4
< 0.2
£
5
z 0

Sparsity

PROMP: Exact recovery rate

=)

50 1
' 0.
40 /7
06
04
30
02
0

20 30 40 50
Sparsity

Num. of measurements

POP: Run time (sec)

50 15
2
=
g
540
2 1
&
3
Ea3o
5
5 0.5
4

20 30 40
Sparsity
RWR: Run time (sec)
2 1
5
£ 0.8
o
2 0.6
@
3
£ 0.4
k]
E 0.2
E}
4
30 40
Sparsity
PROMP: Run time (sec) x21 03

2
5
£ 1.5
13
5
8
151 1
3
5
£ 05
5
z

30
Sparsity

Recovery of binary sparse signals from compressed linear measurements via polynomial opt




@ Conclusions and future work

Recovery of binary sparse signals from compressed linear measurements via polynomial optimization




Conclusions and future work

Conclusions

® We propose a (non-convex) polynomial approach to binary compressed sensing

® The effectiveness of the proposed method leverages on Lasserre’'s polynomial
optimization theory

® An enhancement is obtained with respect to state-of-the-art binary compressed
sensing algorithms

Future work
e further reduction of numerical complexity
® extension to non-binary alphabets
® extension to non-sparse mixed-integer problems, e.g., knapsack problems

Questions? — sophie.fosson@polito.it
https://sites.google.com/site/sophiefosson/
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