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Background: = Emotional corpus collected at UT-Dallas

* ldentify speech with similar emotional content = Multiple sentences from speakers appearing in various

= Can a deep neural network learn to determine podcasts (2.75s — 11s)
distance between expressive behaviors? = Annotated on Amazon Mechanical Turk

= Can a given emotional descriptor facilitate this = VAD: Valence, arousal and dominance (Euclidean distance)

calculated from low-level descriptors
Network Structure

Trained, validated, tested on speaker independent sets

task’ = Primary emotions: anger, sadness, happiness, fear, surprise, 3 hidden layers, 1,024 nodes, Rel.U activation

disgust, contempt, neutral state and other (KL divergence) 512 dimension embedding

= One triplets per sample within a given partition Dropout 0.2, batch normalization, 15 epochs
19,238 training triplets

= How well can a computer perform this task?
Our Work:

= Preference learning using triplet loss functions
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= Compare emotional descriptors for this task:
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= Compare results with human performance Samples Percentile Sample

Global Performance Human Performance (VAD) Evaluating emotional similarity is better in the VAD
«  Perceptual evaluation space than in the categorical space
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| = Results per percentile used to get negative sample
= VAD provides better representation for this task = 060 triplets (5 regions N VAD) Triplets with eXpreSSive anchors are easier to
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1« VAD results in terms of location of anchor E = Model performs better in 90% discriminate than triplets with neutral anchors

_/-/;VAD | = Extreme VAD regions lead to better performance © Pominance oy Humans perform better in 40% Model performance is similar to human performance
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S Valence and superior in some regions of the VAD space
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that subject’'s emotional expression in depth
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