Novel Realizations of Speech—driven Head Movements
with Generative Adversarial Networks
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Background: Corpus: Proposed approach relies on conditional generative adversarial networks (GANS)

= Conversational agents (CAs) created with rules

_ . . = The IEMOCAP corpus * Models are conditioned on speech features
display limited variations

. _ * 1%t female subject (1h6m) Generator and discriminator are composed of two BLSTM layers
= Strong relation between head motion and speech | | | |
= Heaad: The dynamics of the sequence is learned from the time varying speech features

= Goal: Speech-driven head motion for CAs _
= Motion capture data provided at each frame

= Speech-driven frameworks tend to generate head
motion with limited range of movements
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= Three head angular rotations The input noise for the GAN model captures different variations of head motions
= Audio: under the same prosodic states

Z: noise distribution

S,. speech features

= Increase the range of synthesized movements

X,: output of the generator
= (Generate multiple novel realizations of head

movements for an input speech signal

d,: head pose
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Rendering Toolkit:

= Xface

Objective Evaluation Subjective Evaluation Sampling from Noise Distribution Conclusions

= Parzen window density estimator = Amazon mechanical turk (AMT) A Y U ¥\ VRO cGAN models the intrinsic random properties of beat gestures

= Each frame as one sample (103.7K) = 5 15s-segments per model (15 videos) 2! | | — | cGAN generates samples that better fit the distribution of the

= Baselines: = 12 workers (4 evaluations per comparison) | data compared with the three baselines

- DBN : '_ = Proportion preference of cGAN over a2 T e Subjective evaluations showed higher average preferences
baselines: Video 1 Video? ol . .. . .1 9 for cGAN compared with BLSTM-MSE

= BLSTM-MSE PO |
m - = We can generate as many sequences as we need
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~ Video 1

Forward Layer

 Moderately Video 1

= 0.682 (DBN) . = Considering the interlocutor may provide more predictive

 Moderately Video 2
~ Video 2

Type  Model Log Likelihood - Five different realizations features for head pose generation when the CAis listening
DBN -121.406 (120.98)

Baselines BLSTM-MSE -106.107 (11377)
BLSTM-CC  -38.415 (65.41)

Proposed cGAN -30.559 (48.67) | 1 1 . ‘ look natural
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Preference [%] of Conditional GAN This work was funded by NSF (”S 171 8944)

BLSTM-CCF ' ' ' ' ' — - Use different noise! = The model can be applied to learn facial movements during
. " X




