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The Problem

• The performance of a classifier degrades if the there is a 

mismatch between training and testing conditions

• Train system that recognize emotional categories using 

limited labeled data
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Why Ensembles?

• Ensembles perform well in extreme scenarios with large 

or limited amounts of data

• The ensemble performance is better than its best 

classifier, under certain conditions

• Ensembles diversity

• Using different data partitions

• Using different sets of features

• Using different classifier models

• Ensembles may mitigate the performance degradation 
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Related Work

The main approaches to modify ensembles tested on new data

• Weighting the ensemble classifiers

• Weighting or resampling the source data to match the target 

distribution

Our approach focuses on selecting a feature space that 

maximizes performance on the new data
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Proposed Approach
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Data Selection Active Learning

• Vote Entropy

𝐷 𝑥 = −෍

𝑐

𝑉 𝑐, 𝑥

𝑘
log(

𝑉 𝑐, 𝑥

𝑘
)

𝑘 is the number of classifiers in ensemble 

𝑉 𝑐, 𝑥 is the number of classifiers assigning class 𝑐 to sample 𝑥.

• Uncertainty Sampling

Select the samples the classifier has the least confidence in.

• Random Sampling (passive learning)
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Proposed Approach

• The goal of the proposed approach

• Minimize the mismatch between training and testing

• Preserve the diversity of the ensemble

• This is achieved by:

• Biasing different classifiers towards different classes

• Eliminating overlap between feature sets used by the classifiers

• Feature selection is conducted by maximizing the performance 

over the newly annotated data from the target domain
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Proposed Approach

• We used 𝐹2 score to bias the classifier towards a class

𝐹𝛽 = 1 + 𝛽2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

The classifier tries to maximize the 𝐹2 of the selected class
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Proposed Approach

• Classifiers take turns selecting features

• Once a feature is selected, it is no longer available for the 

remaining classifiers
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Proposed Approach

• Feature selection is conducted by maximizing the performance 

over the newly annotated data from the target domain
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Databases

• Train: USC-IEMOCAP 

• 12 hours of conversational recordings from 10 
actors in dyadic sessions

• Sessions consists of emotional scripts as well 
as improvised interactions

• Turns are annotated by 3 evaluators into 
categorical emotions

• Test: MSP-IMPROV 

• Dyadic interaction sessions from 12 actors 

• Contains 8,438 turns including improvised 
natural interactions

• Turns are labeled into four categorical 
emotions as well as dimensional attribute 
scores by at least 5 annotators

12

MSP-IMPROV 

IEMOCAP



msp.utdallas.edu

Experimental Settings

• Ensemble is composed of 40 SVM Classifiers

• Four class balanced classification problem 

• Angry, happy, sad, neutral

• Random Under-sampling

• Classifier is trained on USC-IEMOCAP and tested on MSP-
IMPROV

• Baseline is an ensemble of classifiers using features 
optimized on the source domain

• We used Interspeech 2013 feature set

• Correlation Feature Selection 6,373  --- 3,000

• Each classifier selects 40 features
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Comparing with the Baseline
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Uncertainty Sampling provides improvement over the baseline with more
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Comparing with the Baseline
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Vote Entropy performance gap drops as more data is selected
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Comparing with the Baseline
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Random Sampling performance gap increases as more data is selected
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Comparing with the Baseline
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Comparing Data Selection Criteria 
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Vote Entropy outperforms for small data size 

Uncertainty Sampling catches up as we increase the size
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Comparing Data Selection Criteria 
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Random sampling outperforms in all data sizes
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Comparing Data Selection Criteria 
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Vote Entropy outperforms for small data size 

Random Sampling outperforms for larger data size
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Conclusions

• Significant improvement by performing feature 

selection on a small set from the target domain

• Ensuring the ensemble’s diversity yields better 

generalization

• It is important to carefully choose which data to use in 

the feature selection

• If you are selecting a small sample Vote Entropy is the 

best option

• If the sample size is large Random sampling better 

represents the target domain
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Thanks for your attention!
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