

EMET: EMBEDDINGS FROM MULTILINGUAL-ENCODER TRANSFORMER FOR FAKE NEWS DETECTION

ICASSP May 04-08, 2020 Barcelona Stephane Schwarz, Antônio Theóphilo, and Anderson Rocha Institute of Computing, Unicamp, BR

Motivation

Pew Research Center [1]

Oxford Internet Institute [2]

Motivation

Pew Research Center [1]

2017

2018

Oxford Internet Institute [2]

2019

EMET: EMBEDDINGS FROM MULTILINGUAL-ENCODER TRANSFORMER FOR FAKE NEWS DETECTION

ICASSP May 04-08, 2020 Barcelona Stephane Schwarz, Antônio Theóphilo, and Anderson Rocha Institute of Computing, Unicamp, BR

What is fake news?

Prior Art: Heuristic-based

Caslillo et al. [3], Theóphilo et al.[5]

Prior Art: Multi-domain

Qi et al. [4]

EMET: Our hypothesis

Jesus words: "Then you will know the truth, and the truth will set you free."

John 8: 32

$$\mathcal{F}: (T_i^E \cdot C(T_i^E) \cdot N^E) \implies y$$

$$\mathcal{F}: (T_i^E \cdot C(T_i^E) \cdot N^E) \implies y$$

EMET: Dataset

Training News was obtained from BBC and for Test set from Reuters.

EMET: Dataset

Class	Train	Test	Augmen. Train	Augmen. test
Real	4314	2200	9304	22000
Fake	6690	3732	23026	36262
Unknown	1416	600	2361	600

EMET: Dataset

Class	Train	Test	Augmen. Train	Augmen. test
Real	4314	2200	9304	22000
Fake	6690	3732	23026	36262
Unknown	1416	600	2361	600

EMET: Input

EMET: Convolution

EMET: Fully-connected

EMET: Classification Ensemble - Training

EMET: Classification Ensemble - Testing

Experimental Results: Questions

• How text embeddings from a multilingual encoder and the us-age of news pieces improve the identification of misleading content on social media?

• How the comments contribute to improving classification performance?

• How the ensemble method capture general information to better model the test set?

Experimental Setup: Unchecked news (UNC)

Method	Accuracy	Precision	Recall	F1
UCN	76.4	76.9	76.4	75.2
EANN-Text [6]	53.2	59.8	54.1	56.8
MVAE-Text [7]	52.6	52.7	53.9	53.2

Experimental Setup: Checked news (CN)

Method	Accuracy	Precision	Recall	F1
CN	92.92	92.99	92.92	92.94
EANN-Text	53.2	59.8	54.1	56.8
MVAE-Text	52.6	52.7	53.9	53.2

Experimental Results: Questions

• How text embeddings from a multilingual encoder and the us-age of news pieces improve the identification of misleading content on social media?

• How the comments contribute to improving classification performance?

• How the ensemble method capture general information to better model the test set?

Experimental Setup: CN and comments (CNC)

Method	Accuracy	Precision	Recall	F1
CN	92.92	92.99	92.92	92.94
CNC	93.47	93.91	93.47	93.61

Experimental Results: Questions

• How text embeddings from a multilingual encoder and the us-age of news pieces improve the identification of misleading content on social media?

• How the comments contribute to improving classification performance?

• How the ensemble method capture general information to better model the test set?

Experimental Setup: CNC and ensemble (CNCE)

Method	Accuracy	Precision	Recall	F1
CNC	93.47	93.91	93.47	93.61
CNCE	94.08	91.31	91.21	91.26

EMET helps to address the problem of fake news detection on social media platforms in a multilingual scenario.

Future work

Explore Multi Domain data (Image + Text)

Acknowledgments

References

[1] Pew Research Center. Social media fact sheet. https://www.pewresearch.org/internet/fact-sheet/social-media

[2] Samantha Bradshaw and Philip N. Howard. 2019 global inventory of organised social media manipulation.

https://comprop.oii.ox.ac.uk/wp-content/uploads/sites/93/2019/09/CyberTroop-Report19.pdf, 2019.[Online; accessed on October 10 th, 2019].

[3] Carlos Castillo et al.. Information credibility on twitter. In Proceedings of the 20th international conference on World wide web, pages 675–684. ACM, 2011.

[4] Peng Qi, et al. Exploiting multi-domain visual information for fake news detection. arXiv preprint arXiv:1908.04472, 2019.

[5] Antônio Theóphilo et al. A needle in a haystack? harnessing onomatopoeia and user-specific stylometrics for authorship attribution ICASSP IEEE micromessages. In 2019-2019 International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2692–2696. IEEE, 2019.

[6] MediaEval Multimedia Benchmark. 2015 verifying multimedia use dataset. http://www.multimediaeval .org/mediaeval2015/verifyingmultimediause/, 2015. [Online; accessed on October 10 th , 2019].

[7] Yaqing Wang et al.. Eann: Event adversarial neural networks for multi-modal fake news detection. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 849–857. ACM, 2018.

[8] Dhruv Khattar et al. Mvae: Multimodal variational autoencoder for fake news detection. In The World Wide Web Conference, pages 2915–2921. ACM, 2019.

EMET: EMBEDDINGS FROM MULTILINGUAL-ENCODER TRANSFORMER FOR FAKE NEWS DETECTION

ICASSP May 04-08, 2020 Barcelona Stephane Schwarz, Antônio Theóphilo, and Anderson Rocha Institute of Computing, Unicamp, BR