

Multi Image Depth from Defocus Network with Boundary Cue for Dual Aperture Camera

Gwangmo Song, Yumee Kim, Kukjin Chun, Kyoung Mu Lee

Seoul National University

Presenter : Gwangmo Song

Introduction

- Depth estimation problem
- Double defocused images (Different *Depth-of-Field*)

Previous Works

- MRF-based vs. DNN-based
- Depth from Defocus(DFD) problem [1,2]
- Dual DFD [3]

[1] Saeed Anwar, Zeeshan Hayder, and Fatih Porikli, "Depth estimation and blur removal from a single out-of-focus image," in BMVC, 2017.

[2] Marcela Carvalho, Bertrand Le Saux, Pauline Trouvé Peloux, Andrés Almansa, and Frédéric Champagnat, "Deep depth from defocus: how can defocus blur improve 3d estimation using dense neural networks?," in ECCV, 2018.
[3] Gwangmo Song and Kyoung Mu Lee, "Depth estimation network for dual defocused images with different depth-of-field," in ICIP, 2018.

Introduction

• Contributions

Boundary Cue

- Edge information
- Improve accuracy

Real dataset

- Collect new dataset
- Limited circumstance

- Boundary Cue
 - Homogeneous region has less effect of blur
 - Subtraction highlights around the edge of the object

- Main Network
 - EDSR [1] based
 - Baseline network [2]

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee, "Enhanced deep residual networks for single image super-resolution," in CVPRW, 2017.
Gwangmo Song and Kyoung Mu Lee, "Depth estimation network for dual defocused images with different depth-of-field," in ICIP, 2018.

Datasets

- Synthetic dataset [1]
 - Dual defocused dataset
 - NYU-v2 dataset
 - Using thin lens model ($F_{\#} = 2, 14$)

 $\sigma = \frac{1}{\sqrt{2}} \frac{1}{p} \frac{f^2}{F_{\#}} \frac{1}{d_{IFP} - f} \left(1 - \frac{d_{IFP}}{d} \right)$

• 795 training data and 654 test data

[1] Gwangmo Song and Kyoung Mu Lee, "Depth estimation network for dual defocused images with different depth-of-field," in ICIP, 2018.

Datasets

- Real dataset
 - Tunable aperture camera
 - F_# = 1.8, 4.0
 - Static scene
 - LIDAR align
 - 199 training data and 100 test data

- Real dataset
 - Parking lot
 - Maximum distance : 70m
 - 3 types of car, 3 types of pedestrian

- Synthetic dataset
 - NYU v2-based
- rel
 - Average relative error
- *log10*
 - Average log₁₀ error
- rms
 - Root mean square error

Method	rel	log10	rms	
Single DFD				
Anwar <i>et al</i> . [1]	0.094	0.039	0.347	
D3-Net [2]	0.068	0.028	0.274	
D3-Net* [2]	0.036	0.016	0.144	
D3-Net** [2]	0.056	0.024	0.244	
Dual DFD				
D3-Net** [2]	0.030	0.013	0.164	
Song et al. [3]	0.028	0.012	0.154	
Our	0.026	0.011	0.139	

* Using dataset of [1]

** Using dataset of [3]

[1] Saeed Anwar, Zeeshan Hayder, and Fatih Porikli, "Depth estimation and blur removal from a single out-of-focus image," in BMVC, 2017.

[2] Marcela Carvalho, Bertrand Le Saux, Pauline Trouvé Peloux, Andrés Almansa, and Frédéric Champagnat, "Deep depth from defocus: how can defocus blur improve 3d estimation using dense neural networks?," in ECCV, 2018.
[3] Gwangmo Song and Kyoung Mu Lee, "Depth estimation network for dual defocused images with different depth-of-field," in ICIP, 2018.

- Ablation Study
- Effect of boundary cue

Method	rel	log10	rms
Baseline	0.031	0.013	0.162
Boundary Cue	0.028	0.012	0.146
Boundary Cue + Skip Conn.	0.026	0.011	0.139

• Qualitative

[1] Gwangmo Song and Kyoung Mu Lee, "Depth estimation network for dual defocused images with different depth-of-field," in ICIP, 2018.

- Real dataset
- Patch-size
 - 224 vs. 48
 - Homogeneous region

- GT depth map
 - Sparse LIDAR point
 - Boundary is **not clean**
 - Boundary cue \downarrow

Method	rel	log10	rms
Single DFD			
D3-Net [1]	0.027	0.012	2.070
Dual DFD			
D3-Net [1]	0.027	0.012	1.202
Song et al. [2]	0.019	0.008	1.400
Our	0.018	0.008	1.320

Marcela Carvalho, Bertrand Le Saux, Pauline Trouvé Peloux, Andrés Almansa, and Frédéric Champagnat, "Deep depth from defocus: how can defocus blur improve 3d estimation using dense neural networks?," in ECCV, 2018.
Gwangmo Song and Kyoung Mu Lee, "Depth estimation network for dual defocused images with different depth-of-field," in ICIP, 2018.

• Qualitative

- Object-based measure
 - Ignore *sky*, *road*
 - Center of object
 - Mean value of bounding box

Method	rel	log10	rms
Single DFD			
D3-Net [1]	0.045	0.020	1.064
Dual DFD			
D3-Net [1]	0.041	0.018	0.943
Song et al. [2]	0.040	0.016	0.887
Our	0.031	0.013	0.718

Marcela Carvalho, Bertrand Le Saux, Pauline Trouvé Peloux, Andrés Almansa, and Frédéric Champagnat, "Deep depth from defocus: how can defocus blur improve 3d estimation using dense neural networks?," in ECCV, 2018.
Gwangmo Song and Kyoung Mu Lee, "Depth estimation network for dual defocused images with different depth-of-field," in ICIP, 2018.

Summary

- Create **boundary cue** through dual defocused images
- Proposal of **DFD network** structure using boundary cue
- Dataset collection using tunable aperture camera
- Record SOTA in synthetic and real dataset

