





## Sparse Directed Graph Learning for Head Movement Prediction in 360 Video Streaming

ICASSP2020 Barcelona Xue Zhang, Gene Cheung, Patrick Le Callet, and Jack Z. G. Tan



--7th May, 2020









#### Motivation

#### > Challenges in interactive 360 video streaming scenario



- 360 videos: high spatial resolution (*e.g.*,10K 10240×4320)
- Bandwidth-limited networks
- Extract and transport only a sub-region corresponding to a viewer's current field-of-view (FoV)
- Round-trip-time (RTT) delay: head movement prediction foretelling a viewer's future FoVs



YOR

### **Motivation (cont'd)**

> What is RTT?



Interaction between server and client where RTT is T and frame interval is  $\Delta$ . A switched stream arrives T seconds after a feedback is sent.







#### **Related works**

#### Linear regression models [1][2]

- pro: historical samples and dead-reckoning algorithms to extrapolate the trends
- **con**: prediction accuracy **drops** precipitously for larger RTTs

#### Pure data-driven model learning

- pro: using neural networks [3] or reinforcement learning scheme [4]
- con: 1) a huge dataset of traces for training a large number of network parameters;
   2) training is typically specific to particular setups (*e.g.*, RTT mean and variance).

[1] L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo, "360probdash: Improving QOE of 360 video streaming using tile-based http adaptive streaming," ACM MM'17, pp. 315–323.

[2] S. Petrangeli, V. Swaminathan, M. Hosseini, and F. De Turck, "An HTTP/2-based adaptive streaming framework for 360 virtual reality videos," ACM MM'17, pp. 306–314.

[3] C.-L. Fan, S.-C. Yen, C.-Y. Huang, and C.-H. Hsu, "Optimizing fixation prediction using recurrent neural networks for 360 video streaming in head-mounted virtual reality, *TMM*, vol.22, no.3, pp. 744 – 759, March 2020.

[4] M. Xu, Y. Song, J. Wang, M. Qiao, L. Huo, and Z. Wang, "Predicting head movement in panoramic video: A deep reinforcement learning approach," *TPAMI*, vol. 41, no. 11, pp. 2693–2708, July 2018.



#### **Related works (cont'd)**

- > Visual attention (VA) detection (*e.g.*, ICME Grand Challenge "salient360!")
  - **pro**: 1) datasets [5];
    - 2) toolbox to facilitate the development of VA models [6];
    - 3) framework to evaluate VA models [7];
    - 4) ad-hoc VA models for 360 contents [8].
  - con: 1) more an "aggregate" behavior rather than an individual behavior;
     2) target prediction is in time herizon of typically 10s to 15s viewing time
    - 2) target prediction is in time horizon of typically 10s to 15s viewing time not the typical RTT.

[5] Y. Rai, J. Gutierrez, and P. Le Callet, "A dataset of head and eye movements for 360 degree images," *ACM MMSys'17*, pp. 205–210.
[6] J. Gutierrez, E. David, Y. Rai, and P. Le Callet, "Toolbox and dataset for the development of saliency and scanpath models for omnidirectional / 360° still images," *Signal Processing: Image Communication*, vol. 69, pp. 35–42, November 2018
[7] M. Silva, J. Gutierrez, A. Coutrot and P. Le Callet, "Introducing un salient360! benchmark: A platform for evaluating visual attention models for

360° contents," *IEEE QoMEX'18*, Italy.

[8] Y. Zhu, G. Zhai, and X. Min, "The prediction of head and eye movement for 360 degree images," *Signal Processing: Image Communication*, vol. 69, pp. 15–25, 2018.







#### Contributions







#### **Sparse Directed Graph Learning**

Define two variables:

- **P**:  $K \times K$  view transition probability matrix (360° sphere is discretized uniformly into K angles)
- *q* : stationary *view probability vector*
- qP = q

A *maximum a posteriori* (MAP) optimization problem to find a Markov model for head movement prediction

Likelihood Term (depends on data traces)  $P(\mathcal{X}|\boldsymbol{\theta}) = \prod_{k=1}^{K} q_{k}^{N_{k}} \prod_{l=1}^{K} p_{kl}^{N_{kl}} \qquad \text{number of occurrences of switching from angle } k \text{ to angle } l \text{ in set } \mathcal{X}}$ 

where  $\mathcal{X}$  is the training set of observed angle switches in traces

 $\boldsymbol{\theta} = \{\{q_k\}, \{p_{kl}\}\}\$ 



### Sparse Directed Graph Learning (cont'd)

#### **Problem Formulation**

#### Prior Term

• The prior for *q* depends on a computed *360 saliency* map [6]

The prior for *P* depends on a sparse graph assumption

$$P(\mathbf{P}) = \exp\left(\frac{-\parallel \mathbf{P} \parallel_0}{\sigma_p^2}\right)$$

 $P(\mathbf{q}) = \prod_{k=1}^{K} \exp\left(\frac{-(q_k - \hat{q}_k)^2}{\sigma_q^2}\right)$ 

[6] J. Gutierrez, E. David, Y. Rai, and P. Le Callet, "Toolbox and dataset for the development of saliency and scanpath models for omnidirectional / 360° still images," *Signal Processing: Image Communication*, vol. 69, pp. 35–42, November 2018.

the normalized saliency of angle k





13/20

#### **Sparse Directed Graph Learning (cont'd)**

#### **Problem Formulation**

MAP Estimation

$$\arg\min_{\{\{q_k\},\{p_{kl}\}\}} - \sum_{k=1}^{K} \left( N_k \ln q_k + \sum_{l=1}^{K} N_{kl} \ln p_{kl} \right) + \sum_{k=1}^{K} \frac{(q_k - \hat{q}_k)^2}{\sigma_q^2} + \frac{1}{\sigma_p^2} \sum_{k,l} \omega_{kl} (p_{kl})^2 \qquad (10)$$

$$s.t. \sum_{k=1}^{K} q_k p_{kl} = q_l, \ \forall l \qquad (8c)$$

$$\sum_{k=1}^{K} q_k = 1, \ \sum_{l=1}^{K} p_{kl} = 1, \ \forall k \qquad (8d)$$

$$q_k \ge \epsilon_q, \ \forall k, \ p_{kl} \ge \left\{ \begin{array}{c} \epsilon_p, \ \text{if } \forall k, \forall l \in \mathcal{N}(k) \\ 0, \ \text{otherwise} \end{array} \right. \qquad (8e)$$

$$the neighborhood of K, to ensure that transition probabilities between adjacent angles are non-zero based on a biological head movement model.$$

[9] I. Daubechies, R. DeVore, M. Fornasier, and C S. Gunturk, "Iteratively reweighted least squares minimization for sparse recovery," *Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences*, vol. 63, no. 1, pp. 1–38, 2010.



#### **Sparse Directed Graph Learning (cont'd)**

YORK UNIVERSITÉ









#### **Experiments**

Settings

- Six 360 VR sequences at 30fps with length around 60 seconds [10]
  - two 8K resolution (7680 × 3840) with around 110 traces
  - four 4K resolution (3840 × 1920) with around 50 traces

#### Comparison algorithms

• regression models:

linear regression "LR" [1], weighted linear regression "WLR" [11] and "Heuristic" [2].

- a naive approach: "Saliency".
- > Prediction error of each trace:  $Er = -\frac{\sum_{t=1}^{L} \ln g_t(T)}{L}$

Where  $g_t(T)$  is the view probability of correct prediction for each instant t.

 $L\,$  is the length of each collected trace.

[1] L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo, "360probdash: Improving QOE of 360 video streaming using tile-based http adaptive streaming," ACM MM'17, pp. 315–323.

[2] S. Petrangeli, V. Swaminathan, M. Hosseini, and F. De Turck, "An HTTP/2-based adaptive streaming framework for 360 virtual reality videos," ACM MM'17, pp. 306–314.

[10] https://www.kandaovr.com/

[11] F. Qian, L. Ji, B. Han, and V. Gopalakrishnan, "Optimizing 360 video delivery over cellular networks," All Things Cellular: Operations, Applications and Challenges, 2016, pp. 1–6.



### **Experiments (cont'd)**

| Seq.        | LR   | WLR  | Heuristic | Saliency | Proposed |
|-------------|------|------|-----------|----------|----------|
| On the hill | 5.61 | 5.58 | 6.29      | 4.49     | 0.16     |
| Beijing     | 3.73 | 3.69 | 6.27      | 4.71     | 0.15     |
| Guangzhou   | 1.35 | 1.34 | 3.62      | 4.87     | 0.07     |
| Huizhou     | 3.07 | 2.97 | 5.67      | 4.19     | 0.20     |
| Concert     | 9.83 | 9.51 | 6.46      | 4.31     | 0.19     |
| Lamborghini | 5.76 | 5.71 | 5.22      | 4.61     | 0.13     |

**Table 1**. The average Er of different models when T = 0.5s.



Fig. 2. The variation of user's angles over time in one trace of *On the hill*.

Note that when users have large and frequent head motions, it is difficult for competitors to predict accurately but not for our proposed model.



#### **Experiments (cont'd)**

**Results** 

LASSONDE

YORK



Benefiting from projection-free FW and warm start in LP, our strategy has reduced complexity.





# Thank You !



