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» Challenges in interactive 360 video streaming scenario

Server Client

a - o) - )

360 video "N B v Received tile
E i e combinations
FoV
Encoded reconstruction
tiles . ¢
\_ FoV (Head mové}nent predictio@ \_ )

(l 360 videos: high spatial resolution (e.g.,10K 10240x4320)
B Bandwidth-limited networks

Round-trip-time (RTT) delay: head movement prediction foretelling a viewer’s future FoVs

N

M Extract and transport only a sub-region corresponding to a viewer’s current field-of-view (FoV)

~N

J
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Motivation (cont’d)
» What is RTT?

server client
t=-T/2 4

start trans.

t=0 start playback
RTT=T .
=/A send 1°' FB

t=2A send 2™ FB

t= T/2+A

1% switch str.

t=T/2+2A F=T4A

2" switch str. T |
Receive 1° switched str.
t=T+2A
Receive 2" switched str.

Interaction between server and client where RTT is T and frame interval is A.
A switched stream arrives T seconds after a feedback Is sent.
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Related works

» Linear regression models [1][2]
« pro: historical samples and dead-reckoning algorithms to extrapolate the trends

« con: prediction accuracy drops precipitously for larger RTTs

» Pure data-driven model learning
« pro: using neural networks [3] or reinforcement learning scheme [4]

« con: 1) a huge dataset of traces for training a large number of network parameters;
2) training is typically specific to particular setups (e.g., RTT mean and variance).

[1] L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo, “360probdash: Improving QOE of 360 video streaming using tile-based http adaptive streaming,”
ACM MM’17, pp. 315-323.

[2] S. Petrangeli, V. Swaminathan, M. Hosseini, and F. De Turck, “An HTTP/2-based adaptive streaming framework for 360 virtual reality videos,”
ACM MM’17, pp. 306—-314.

[3] C.-L. Fan, S.-C. Yen, C.-Y. Huang, and C.-H. Hsu, “Optimizing fixation prediction using recurrent neural networks for 360 video streaming in
head-mounted virtual reality, TMM, vol.22, no.3, pp. 744 — 759, March 2020.

[4] M. Xu, Y. Song, J. Wang, M. Qiao, L. Huo, and Z. Wang, “Predicting head movement in panoramic video: A deep reinforcement learning
approach,” TPAMI, vol. 41, no. 11, pp. 2693-2708, July 2018.
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Related works (cont’d)

» Visual attention (VA) detection (e.g., ICME Grand Challenge “salient360!”)

 pro: 1) datasets [5];
2) toolbox to facilitate the development of VA models [6];
3) framework to evaluate VA models [7];
4) ad-hoc VA models for 360 contents [8].

« con: 1) more an “aggregate” behavior rather than an individual behavior;
2) target prediction is in time horizon of typically 10s to 15s viewing time not
the typical RTT.

[5] Y. Rai, J. Gutierrez, and P. Le Callet, “A dataset of head and eye movements for 360 degree images,” ACM MMSys’17, pp. 205-210.

[6] J. Gutierrez, E. David, Y. Rai, and P. Le Callet, “Toolbox and dataset for the development of saliency and scanpath models for omnidirectional
/ 360- still images,” Signal Processing: Image Communication, vol. 69, pp. 35-42, November 2018

[7] M. Silva, J. Gutierrez, A. Coutrot and P. Le Callet, “Introducing un salient360! benchmark: A platform for evaluating visual attention models for
360- contents,” IEEE QoMEX’18, Italy.

[8] Y. Zhu, G. Zhai, and X. Min, “The prediction of head and eye movement for 360 degree images,” Signal Processing: Image Communication,
vol. 69, pp. 15-25, 2018.
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Contributions

{Sparse directed grap-

: discrete angles in the 360 '
 view are nodes in a graph l

One can evaluate
the view probability
distribution v, 1

collected
viewers’ head
movement
traces

one RTT T later as
v, = v, PT given

original distribution
v; at time t.

a biological
head rotation
model

a 360 image
saliency map

an estimate of stationary I instantiation of the : I physical constraints :
probability distribution ' state transitions ! 1 on the state transitions !

{ a unified Markov model J ‘ a probability transition matrix P
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Sparse Directed Graph Learning Problem Formulation

Define two variables:
« P : K X K view transition probability matrix (360° sphere is discretized uniformly into K angles)
» q : stationary view probability vector

* qP=q

A maximum a posteriori (MAP) optimization problem to find a Markov model for head
movement prediction

{number of occu rrences}

o of angle k in set X’
» Likelihood Term (depends on data traM
Ko e {number of occurrences of switching}

from angle k to angle lin set X

where X is the training set of observed angle switches in traces

0 = {{ar}, {pri}}
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Sparse Directed Graph Learning (cont’d) Problem Formulation

> Prior Term

* The prior for q depends on a computed 360 saliency map [6]

K L _’/:‘\‘ 2 . .
P(q) = H exp ( (q \q/_g,) ) > [the normalized saliency of angle k ]
k=1

0§
* The prior for P depends on a sparse graph assumptioni

p(P):exp(—“l;’Ho) -
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[6] J. Gutierrez, E. David, Y. Rai, and P. Le Callet, “Toolbox and dataset for the - awdfoo L%ff’%’@m ]
development of saliency and scanpath models for omnidirectional / 360 still images,” * ' ) 1 /'
Signal Processing: Image Communication, vol. 69, pp. 35—42, November 2018. __liS_g[_S_C_a_r_IE)_a_t_h_ _______ .’
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Sparse Directed Graph Learning (cont’d)

Problem Formulation

> MAP Estimation

arg min
{{Qk:}s{i“kl}}

-y

-~ -

K
1, me =1, Vk

=1

QG > €q. Yk, pr > { €p, if V&, VI elN(k-),

0, otherwise

[9] I. Daubechies, R. DeVore, M. Fornasier, and C S. Gunturk,

/ Iterative reweighted \

(10) least square (IRLS) [9]
1
> Wki = 73—\
(PR +es)
using previous estimate pui
(80) @ promote sparsity in P)
(8d)

the neighborhood of K, to ensure that transition
(8e)| probabilities between adjacent angles are non-zero
based on a biological head movement model.

“Iteratively reweighted least squares minimization for sparse recovery,”

Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, vol. 63, no. 1, pp.

1-38, 2010.
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Sparse Directed Graph Learning (cont’d) Optimization

m>‘> Optimizing g when P is fixed:

= gk — i)’
min — > NiInqgp + k — 9k

s.t. max{eq, g — 0} < qr < max{eq,@;‘;—l— 6}, Vk
qP =4q

K
ZQk =1
k=1
the eigenvector of P

V correspondingto eigenvalue 1.

* Frank-Wolfe optimization strategy (projection-free):

» Optimizing P when q is fixed:

K K | K K
n}i)n—ZZnglnpm-l-EZZWM(EM)Q

k=1 1=1 P p—=11=1

K K
S.t. qupm =q, VI, ZPM =1, Vk,
k=1 =1

€p, if VE, VI € N (k)
Pkt 2 { 0, otherwise

linear approximation | Find the optimal direction s by solving: Linear Program benefits
In each iteration min s' V/f(P(t)) suchthat s € R from warm start.
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» Six 360 VR sequences at 30fps with length around 60 seconds [10]
* two 8K resolution (7680 X 3840) with around 110 traces
e four 4K resolution (3840 X 1920) with around 50 traces

» Comparison algorithms
* regression models:
linear regression “LR” [1], weighted linear regression “WLR” [11] and “Heuristic” [2].

* anaive approach: “Saliency”.

L
» Prediction error of each trace: Fr = — 2t lglgf(T)

Where g+(1") is the view probability of correct prediction for each instant t.
L is the length of each collected trace.

[1] L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo, “360probdash: Improving QOE of 360 video streaming using tile-based http adaptive streaming,’

ACM MM’17, pp. 315-323.
[2] S. Petrangeli, V. Swaminathan, M. Hosseini, and F. De Turck, “An HTTP/2-based adaptive streaming framework for 360 virtual reality videos,’

ACM MM’17, pp. 306-314.

[10] https://mww.kandaovr.com/
[11] F. Qian, L. Ji, B. Han, and V. Gopalakrishnan, “Optimizing 360 video delivery over cellular networks,” All Things Cellular: Operations,

Applications and Challenges, 2016, pp. 1-6.
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Experiments (cont’d)

Table 1. The average Er of different models when 7" = 0.5s.

Seq. LR WLR Heuristic Saliency Proposed
On the hill 5.61 5.58 6.29 4.49 0.16
Beijing 3.73 3.69 6.27 4.71 0.15
Guangzhou .35 1.34 3.62 4.87 0.07
Huizhou 3.07 2.97 5.67 4.19 0.20
Concert 9.83 9.51 6.46 4.31 0.19
Lamborghini  5.76 5.71 5.22 4.61 0.13
100 I | -
80 - o -
“3% 60 F H \
§ 40 - « -
> 20
0 I | -0 | | |
0 5 10 15 20 25 30 35 40
Time(s)

Fig. 2. The variation of user’s angles over time in one trace of On the hill.

Note that when users have large and frequent head motions, it is difficult for competitors to predict
accurately but not for our proposed model.
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Experiments (cont’d)
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Fig. 3. Prediction error§maller than 10>or On the hill.

~

-
Sso o

Benefiting from projection-free FW and warm start in LP, our strategy has reduced complexity.
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Thank You !
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