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➢ Challenges in interactive 360 video streaming scenario

◼ 360 videos: high spatial resolution (e.g.,10K 10240×4320)

◼ Bandwidth-limited networks

◼ Extract and transport only a sub-region corresponding to a viewer’s current field-of-view (FoV)

◼ Round-trip-time (RTT) delay: head movement prediction foretelling a viewer’s future FoVs

Gene Cheung(genec@yorku.ca)
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Interaction between server and client where RTT is T and frame interval is ∆. 

A switched stream arrives T seconds after a feedback is sent.
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➢ What is RTT?

Motivation (cont’d) 
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➢ Linear regression models [1][2]

• pro: historical samples and dead-reckoning algorithms to extrapolate the trends

• con: prediction accuracy drops precipitously for larger RTTs

➢ Pure data-driven model learning 

• pro: using neural networks [3] or reinforcement learning scheme [4]

• con: 1) a huge dataset of traces for training a large number of network parameters;

2) training is typically specific to particular setups (e.g., RTT mean and variance).

Gene Cheung(genec@yorku.ca)
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➢ Visual attention (VA) detection (e.g., ICME Grand Challenge “salient360!”)

• pro: 1) datasets [5];

2) toolbox to facilitate the development of VA models [6];

3) framework to evaluate VA models [7];

4) ad-hoc VA models for 360 contents [8].

• con: 1) more an “aggregate” behavior rather than an individual behavior;

2) target prediction is in time horizon of typically 10s to 15s viewing time not

the typical RTT.

[5] Y. Rai, J. Gutierrez, and P. Le Callet, “A dataset of head and eye movements for 360 degree images,” ACM MMSys’17, pp. 205–210.

[6] J. Gutierrez, E. David, Y. Rai, and P. Le Callet, “Toolbox and dataset for the development of saliency and scanpath models for omnidirectional

/ 360◦ still images,” Signal Processing: Image Communication, vol. 69, pp. 35–42, November 2018

[7] M. Silva, J. Gutierrez, A. Coutrot and P. Le Callet, “Introducing un salient360! benchmark: A platform for evaluating visual attention models for

360◦ contents,” IEEE QoMEX’18, Italy.

[8] Y. Zhu, G. Zhai, and X. Min, “The prediction of head and eye movement for 360 degree images,” Signal Processing: Image Communication,

vol. 69, pp. 15–25, 2018.
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Contributions

discrete angles in the 360 

view are nodes in a graph

an estimate of stationary 

probability distribution 

instantiation of the 

state transitions

physical constraints 

on the state transitions
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A maximum a posteriori (MAP) optimization problem to find a Markov model for head 

movement prediction

➢ Likelihood Term (depends on data traces)

where is the training set of observed angle switches in traces
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Problem Formulation 

d

d
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➢ Prior Term

user scanpath
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Problem Formulation Sparse Directed Graph Learning (cont’d) 

[6] J. Gutierrez, E. David, Y. Rai, and P. Le Callet, “Toolbox and dataset for the

development of saliency and scanpath models for omnidirectional / 360◦ still images,”
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➢ MAP Estimation

Iterative reweighted 
least square (IRLS) [9]

using previous estimate
to promote sparsity in 
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Sparse Directed Graph Learning (cont’d) Problem Formulation 
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1–38, 2010.
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Sparse Directed Graph Learning (cont’d) Optimization

❖ Frank-Wolfe optimization strategy (projection-free): 

linear approximation 

in each iteration  
Linear Program benefits 

from warm start.  
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Settings

➢ Six 360 VR sequences at 30fps with length around 60 seconds [10]

• two 8K resolution (7680×3840) with around 110 traces
• four 4K resolution (3840×1920) with around 50 traces

➢ Comparison algorithms 
• regression models:

linear regression “LR” [1], weighted linear regression “WLR” [11] and “Heuristic” [2].
• a naive approach: “Saliency”.

➢ Prediction error of each trace:

is the length of each collected trace.
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Note that when users have large and frequent head motions, it is difficult for competitors to predict 
accurately but not for our proposed model. 
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Experiments (cont’d) Results
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Benefiting from projection-free FW and warm start in LP, our strategy has reduced complexity.
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Experiments (cont’d) Results
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