
Detection of Malicious VBScript Using
Static and Dynamic Analysis with

Recurrent Deep Learning

Jack W. Stokes†, Rakshit Agrawal*, Geoff McDonald††

†Microsoft Research

*University of California, Santa Cruz

††Microsoft Corporation

Outline

Motivation

System Design and Models

Performance Evaluation

Conclusions

1

Malicious VBScript Prevalence

2

0.00% 0.20% 0.40% 0.60% 0.80% 1.00% 1.20%

JS

Other

VBS

HTML

Java

Macro

Percent of different non-PE file detections in January-September 2019 (remaining 97.65% are PE files)

Arrival Methods for Malicious VBScript Files

3

Detected from January through September 2019

Challenges - Obfuscation

Attackers use obfuscation to
hide/drop the malicious content

Unpack or decrypt only upon
execution

Some obfuscators are used by both
benign and malicious VBScript files

Static analysis of the primary script
often fails to detect some malicious
activity

4

Other Challenges

AV automation systems such as sandboxing
environments are designed primarily to
handle Windows PE files (e.g., .exe and .dll)

AV analysts spend most of their time
authoring new signatures for executable
malware

Number of labeled script files is typically much
lower than for executable files

5

Obfuscation and File Dropping

6

Original
Obfuscated
VBScript File

Dropped
VBScript File1

Dropped
VBScript File2

Dropped
VBScript File3

Outline

Motivation

System Design and Models

Performance Evaluation

Conclusions

7

Overview of the VbsNet Neural VBScript
Classification System

8

Neural
Script
Model

Training

Unknown
Script

Script
Normalization

Training with Labeled Scripts

Unknown Script
Evaluation

Labeled
Training

Script

Anti-Malware Engine

Lightweight
Script

Emulation

Anti-Malware Engine
on the Client or Backend

Lightweight
Script

Emulation

Unknown
Extracted
Script(s)

Labeled
Extracted
Script(s)

Malicious Script
Prediction
Probability

Evaluation of an Unknown Script

Script
Normalization

Model

Script Normalization

First remove all whitespace characters except for line breaks

Text is standardized to lowercase and converted to the US-ASCII
character set

All characters are next encoded by their numeric ASCII encoding (e.g.,
’97’ for the character ’a’) delimited by commas to avoid storing
malicious content on the hard drive

9

MAXPOOL1D

s

ReLU

STACKED

LSTMS

CLASSIFICATION

BLOCK

EMBEDDING

LAYER

E =

hCL =

rm

LaMP - LSTM and Max Pooling

Previous Work

Athiwaratkun 2017

Agrawal 2018

PE Files

Adapted for VBScript

End-to-End Training

10

B

CPoLS - Convoluted Partitioning of Long
Sequences
Process the input sequence in parts

Split it first into smaller pieces of
fixed length

Input each of the chunks using a
Conv1D layer

Remaining part of the model is
similar to LaMP

11

MAXPOOL1D

s

ReLU

RECURRENT

CONVOLUTIONS

STACKED

LSTMS

CLASSIFICATION
BLOCK

B =

C =

E =

pm

E

hCL =

EMBEDDING LAYER

Agrawal 2018

Outline

Motivation

System Design and Models

Performance Evaluation

Conclusions

12

Datasets

Provided the first 1000 bytes of each VBScript file

240,504 VBScript files
66,028 malicious and 174,476 benign scripts

Randomly split
Training set: 168,353

Validation set: 24,050

Test set: 48,101

Labels are obtained from the production antimalware detection system

13

Experimental Setup

Keras with the TensorFlow backend

NVIDIA K40 GPU

Training and testing for all models:
Maximum of 15 epochs with early stopping
Adam optimizer, Cross entropy loss

Process first 200 bytes for the LaMP model

Process all 1000 bytes for CPoLS model

14

LaMP Learning Models for VBScripts Zoomed
into FPR = 2%

15

At an FPR of 1.0%, the TPR for the LaMP model is 69.3% with LVBS,CPoLS = 1, CVBS,CPoLS = 1

CPoLS Learning Models for VBScripts

16

CPoLS yields a TPR of 67.1% with LVBS,CPoLS = 1, CVBS,CPoLS = 1 at this FPR = 1.0%

Conclusions

Investigate combining static analysis and dynamic analysis
Dynamic analysis - detect additional files which are dropped during execution
of obfuscated commands

VbsNet
Neural language models can detect malicious VBScript files

Simplest LaMP and CPoLS VBScript models with a single LSTM layer and
classifier hidden layer offer the best, or nearly the best, performance

LaMP models trained with only the first 200 bytes outperform the
CPoLS models which are trained with the first 1000 bytes

17

Thank you for viewing our
presentation!

