Introduction 0	Bayesian HMM with Eigenvoice priors for Speaker Diarization	System description	Results 000	Summary O
(Optimizing Bayesian HMM Based x-	-vector Clusteri	ng for the	
	Second DIHARD Speech Dia	rization Challe	nge	

Mireia Diez¹, Lukáš Burget¹, Federico Landini¹, Shuai Wang^{1,2}, Honza Černocký¹

¹Brno University of Technology, Faculty of Information Technology, IT4I Centre of Excellence, Czechia ²Speechlab, Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

mireia@fit.vutbr.cz, burget@fit.vutbr.cz

ICASSP 2020

Introduction	Bayesian HMM with Eigenvoice priors for Speaker Diarization	System description	Results	Summary

2 Bayesian HMM with Eigenvoice priors for Speaker Diarization

System description

Introduction •	Bayesian HMM with Eigenvoice priors for Speaker Diarization	System description	Results 000	Summary O
Introductio	n			

This work was developed in the context of the Second DIHARD Diarization $\ensuremath{\mathsf{Challenge}}^1$

This presentation will cover the core of the system for $\mbox{Track 1}:$ single-channel diarization following DIHARD I format

The system consists of an **x-vector extractor**, which provides x-vectors every 0.25s, which are then **clustered by a Bayesian HMM with eigenvoice priors**.

More details on the whole system description for track 1 and on systems for all other tracks can be found in *BUT System for the Second DIHARD Speech Diarization Challenge, F.Landini et.al.*

¹N. Ryant et al. "The Second DIHARD Diarization Challenge: Dataset, task, and baselines.". 2819:ech@fit

3/19 M. Diez, L. Burget, F. Landini, S. Wang, H. Černocký Speech@FIT BHMM Based x-vector Clustering for the Second DIHARD Challenge

Introduction	Bayesian HMM with Eigenvoice priors for Speaker Diarization	System description	Results	Summary
	0000			

Bayesian HMM with Eigenvoice priors for Speaker Diarization

An efficient Variational Bayes (VB) inference in a single probabilistic model addresses the complete Speaker Diarization problem.

- A single model is used to infer:
 - The assignment of frames to speakers
 - Number of speakers
 - Speaker specific models

Introduction	Bayesian HMM with Eigenvoice priors for Speaker Diarization	System description	Results	Summary
	0000			

Bayesian HMM with Eigenvoice priors for Speaker Diarization II

Our model is a Bayesian Hidden Markov Model

- States model speaker specific distributions
- Transitions between states represent speaker turns

Introduction	Bayesian HMM with Eigenvoice priors for Speaker Diarization	System description	Results	Summary
	0000			

Bayesian HMM with Eigenvoice priors for Speaker Diarization III

Let $\bm{X} = \{\bm{x}_1, \bm{x}_2, ..., \bm{x}_{\mathcal{T}}\}$ be the sequence of observed x-vectors.

States modeled by PLDA-like model

$$p(\mathbf{x}_t|\mathbf{y}_s) = \mathcal{N}(\mathbf{x}_t; \mathbf{m}_s, \boldsymbol{\Sigma}_{wc}), \qquad (1)$$

$$\mathbf{m}_{s} = \mathbf{m} + \mathbf{V} \mathbf{y}_{s}, \tag{2}$$

$$\rho(\mathbf{y}_s) = \mathcal{N}(\mathbf{y}_s; \mathbf{0}, \mathbf{I}) \tag{3}$$

Same model and inference as our original Bayesian HMM with Eigenvoice priors², but with a single Gaussian per state and **V**, **m** and $\Sigma_{ac} = VV^{T}$ initialized from the PLDA model pretrained on large amount of x-vectors³

²M. Diez et al. "Analysis of Speaker Diarization based on Bayesian HMM with Eigenvoice Priors" 2019.

³M. Diez et al. "Bayesian HMM based x-vector clustering for Speaker Diarization". 2019.

6/19 M. Diez, L. Burget, F. Landini, S. Wang, H. Černocký Speech@FIT BHMM Based x-vector Clustering for the Second DIHARD Challenge

Introduction	Bayesian HMM with Eigenvoice priors for Speaker Diarization	System description	Results	
	000•			
Problem &	approach			

 $Z = \{z_1, z_2, ..., z_T\}$ is the sequence of latent discrete assignments of observations (x-vectors) to HMM states (speakers)

- We seek for the assignment of observations to speakers $p(\mathbf{Z}|\mathbf{X}) = \int p(\mathbf{Z},\mathbf{Y}|\mathbf{X}) d\mathbf{Y}$
- Variational Bayes with mean-field approximation $p({\sf Z},{\sf Y}|{\sf X})\sim q({\sf Z})\prod_s q({\sf y_s})^4$

⁴M. Diez et al. "Analysis of Speaker Diarization based on Bayesian HMM with Eigenvoice Prior 2019.

0	0000	000000	000	0
System (description			

Diarization:

- Weighted Prediction Error (WPE) is used to de-reverberate the speech signal
- x-vectors are extracted from the input conversation using a 1.5s sliding window and a shift of 0.25s
- x-vectors are centered, whitened and length normalized
- x-vectors are pre-clustered using AHC
- x-vectors are clustered using the BHMM model
- A BHMM model is used at frame-level as re-segmentation step
- Overlapped speech is detected and post-processed to get two speaker labels

Introduction	Bayesian HMM with Eigenvoice priors for Speaker Diarization	System description	Results	Summary
0		●00000	000	O
System des	cription - x-vector extraction			

- Time-delay neural network **TDNN**⁵
- Trained for speaker classification on VoxCeleb training and VoxCeleb2 development data with data augmentation: 6 million utterances from 7146 speakers
- Utterances are cut into 2s segments for the neural network training
- 64-dimensional **Fbanks** are used as input features, using an energy-based voice activity detector (VAD) to remove silence
- For test, **512 dimensional x-vectors** are extracted from the penultimate layer every 0.25s from (up to) 1.5s segments
- x-vectors are **centered and whitened** using statistics estimated from DIHARD development and evaluation data, and then **length normalized**

⁵D. Snyder et al. "Deep Neural Network Embeddings for Text-Independent Speaker Verification 2017.

Introduction	Bayesian HMM with Eigenvoice priors for Speaker Diarization	System description	Results	Summary
		00000		

System description - PLDA models

- Out-of-domain PLDA model is trained using VoxCeleb training set
- In-domain PLDA model is trained on the limited DIHARD dev set
- Both models are estimated from **centered**, whitened and length-normalized **x-vectors** extracted from **3s segments**
- Domain adaptation strategy: Interpolation of the two PLDA models

Introduction 0	Bayesian HMM with Eigenvoice priors for Speaker Diarization	System description	Results 000	Summary O
System des	scription - AHC			

- x-vectors are extracted for 1.5s windows with 0.25s overlap
- Conversation dependent PCA, x-vectors (and also PLDA model) projected so as to keep only a **30%** of the total variability
- The projected x-vectors are once more length-normalized
- PLDA based pairwise similarity measure
- AHC stopping threshold fine-tuned on the development set

Introduction	Bayesian HMM with Eigenvoice priors for Speaker Diarization	System description	Results	Summary
		000000		

System description - BHMM clustering of x-vectors

- Uses the same PLDA models as the ones trained for the AHC
- BHMM initialized from the AHC diarization output (AHC set to undercluster)
- Input features are x-vectors extracted every 0.25s
- Parameters analyzed:
 - Acoustic scaling factor F_A , counteracts the assumption of statistical independence between observations by scaling down the log likelihood of the observations
 - Loop probability Ploop

Introduction	Bayesian HMM with Eigenvoice priors for Speaker Diarization	System description	Results	Summary
	0000	000000	000	

System description - Frame-level BHMM re-segmentation

- 19 MFCC + E + Δ features, extracted from 16kHz speech.
- Neither mean nor variance normalization are applied
- Gender-independent **UBM-GMM** with 1024 diagonal-covariance Gaussian components
- The dimensionality of the speaker specific i-vector-like latent variable y_s , is 400
- UBM-GMMs and total variability matrix trained using VoxCeleb2 dataset
- A single iteration of this frame-level BHMM is applied

Introduction	Bayesian HMM with Eigenvoice priors for Speaker Diarization	System description	Results	Summary
0		00000●	000	O
Evaluation	data and metric			

The DIHARD II dataset is the evaluation set

- Created for the second DIHARD challenge
- Includes utterances coming from several sources (YouTube, court rooms, meetings, etc.)
- The corpus consists of 192 development and 194 evaluation recordings, containing around 18h and 17h of speech,

The system is evaluated in terms of the **Diarization Error Rate (DER)** as defined by NIST, with the format established for track 1 of the second DIHARD challenge

- We use the oracle speech activity labels
- No collar used for the evaluation
- Overlap speech regions are evaluated

Introduction O	Bayesian HMM with Eigenvoice priors for Speaker Diarization	System description	Results 000	Summary O
Results AHC optimizatio	n			

DER results attained with AHC using PLDA models trained on VoxCeleb (out-of-domain), DIHARD dev (in-domain) and when interpolating them

		FLDA traineu on			
Set	VB reseg.	VoxCeleb	DIHARD dev	Interp.	
Dav	No	20.46	20.55	19.74	
Dev	Yes	19.84	20.20	19.21	
Eval	No	21.12	22.29	20.96	
Evai	Yes	20.11	21.48	19.97	

Introduction O	Bayesian HMM with Eigenvoice priors for Speaker Diarization	System description	Results ●00	Summary O
Results BHMM Optimiz	ation			

DER for different clustering methods and thresholds

		111100	lioia
Set	method	Optimal for AHC	Under-clustered
Dav	AHC	20.46	(33.55)
Dev	BHMM	19.33	18.34
Eval	AHC	21.12	(33.31)
Evai	BHMM	19.90	19.14

Threshold

Introduction 0	Bayesian HMM with Eigenvoice priors for Speaker Diarization	System description	Results 0●0	Summary O
Results BHMM Optimiz	ation			

DER for different x-vectors extracting frame rates

Set	F_A	P_{loop}	0.75s	0.25s
Dev	1.0	0.0	19.55	23.20
	0.4	0.8	20.13	18.34
Eval	1.0	0.0	20.29	22.89
	0.4	0.8	22.74	19.14

Frame rate

Introduction O	Bayesian HMM with Eigenvoice priors for Speaker Diarization	System description	Results 00●	Summary O
Results BHMM Optimiza	tion			

DER results attained with BHMM using PLDA models trained on VoxCeleb (out-of-domain), DIHARD dev (in-domain) and when interpolating them

Set	VB reseg.	Voxceleb	DIHARD dev	Interp.
Dav	No	18.34	17.87	17.90
Dev	Yes	18.35	18.16	18.23
Eval	No	19.14	18.83	18.39
Evai	Yes	18.95	18.80	18.38

PLDA trained on

Introduction 0	Bayesian HMM with Eigenvoice priors for Speaker Diarization	System description	Results 000	Summary •
Summarv				

This x-vector level BHMM is **the core of our winning system** on track 1 of the second DIHARD speech diarization challenge, obtaining 18.42% DER

- Performance gains
 - Improved x-vector extractor
 - increasing the frame-rate for x-vector extraction
 - using x-vector level BHMM diarization with PLDA model interpolation for "domain adaptation"
- $\bullet\,$ Compared to last year's approach, the described system improves performance by close to an absolute 7% DER
- Around half of the remaining error (9% DER) corresponds to overlapped speech error
- Open source recipe including feature extraction, initial AHC and VBx https://github.com/BUTSpeechFIT/VBx

