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IoT: Huge amount of data is generated every where.



IoT: ML computations need to move to the Edge.
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High Comm cost: transferring raw data, Limited comm resources
High Latency: send data and receive decision
Privacy issue: Data leaves its origin
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Low Communication cost: transferring model parameters
Low latency: infer locally and respond
Privacy: No raw data exchange



Centralized vs. Decentralized Distributed Machine Learning

Parameter Server
Global loss function

F(⋅)

Local loss 
function

ML Model
𝑓"( 𝑋")

Perform a local operation and upload

Perform a global operation and broadcast

Local loss 
function

ML Model
𝑓!( 𝑋!)

Local loss 
function

ML Model
𝑓#( 𝑋#)

Centralized Decentralized

Local loss 
function

ML Model
𝑓"( 𝑋")

Local loss 
function

ML Model
𝑓$( 𝑋$)

Local loss 
function

ML Model
𝑓!( 𝑋!)

Local loss 
function

ML Model
𝑓#( 𝑋#)



Communication-Efficient Distributed Machine Learning

• Distributed ML: Every worker exchanges minimum number of variables per 
training iteration.

e.g. Exchange gradient vector, model parameter vector, model output.

• Model quantization: Minimum payload size per channel use
e.g. LAQ (Sun, Neurips 2019)

• Temporal-Sparsity: Minimum number of workers transmit per iteration
e.g. LAG (Lazily Aggregated Gradient) (Tianyi, Neurips 2018)

• Spatial-Sparsity: Minimum number of neighbors to communicate with 
(Decentralization) and fast convergence.

e.g. GADMM (Group ADMM) (Anis, JMLR)

• Contribution: Minimum number of neighbors plus minimum payload per 
channel use by utilizing model Quantization.

. Q-GADMM (Quantized Group ADMM)
• Stochastic quantization, decreasing step size, Inherit convergence 

guarantees of GADMM for convex loss functions



Standard ADMM: The Parameter server (PS) based Learning problem:

Constrained formulation:

ADMM updating steps of the primal and dual variables at iteration k+1:

The Augmented laggrangian:



Decentralized-based Learning problem: GADMM

Constrained formulation:

Group ADMM (GADMM)
• Divide workers into two groups
• Workers belong to the same group update variables in parallel
• The two groups alternate in their updates
• Each worker communicates with at most two neighbors



GADMM

Augmented Lagrangian:

Primal variables of head workers:

Primal variables of tail workers:

Dual variables (updated locally, zero communication overhead):



Optimality of GADMM for convex loss functions

Necessary and sufficient optimality conditions (Boyd et al., 2011):

Dual residualPrimal residual



Optimality of GADMM for convex loss functions

Lemma 1:



Optimality of GADMM for convex loss functions

Theorem 1:



Q-GADMM: Quantized Group ADMM
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Stochastic quantization



Q-GADMM: Stochastic Quantization

To maintain unbiased error with zero mean:

To guarantee convergence to the optimal solution as k à∞, the following inequality should be satisfied:

The quantized model is retrieved at the neighboring workers as follows:

To transmit 𝑅'(, 𝑏'( and 𝑞' 𝜃'( using 𝒃𝒏𝒌𝒅 + 𝒃𝑹 + 𝒃𝒃 bitsinstead of 32d bits
𝑏-and 𝑏.needs at most 32x2 bits to be transmiEed



Q-GADMM

Augmented Lagrangian:

The primal variables of the head workers: 

The primal variables of the tail workers: 

The dual variables:



Q-GADMM: Convergence Analysis

Primal and dual visibility:

Dual residualPrimal residual



Q-GADMM: Convergence Analysis

Lemma 2:



Q-GADMM: Convergence Analysis

Lemma 3:



Q-GADMM: Convergence Analysis

Theorem 2:



Simulation Setup

• Linear Regression (Convex loss function)

• QGADMM
Benchmarks:
• GADMM
• GD
• QGD

• Real data set: California housing
• The number of workers, N=10.



Q-GADMM: Numerical Results
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• Both GADMM and Q-GADMM significantly outperform the baselines in terms of the convergence speed.
• QGADMM requires the same number of iteration and communication round as GADMM to achieve 10E-5 objective error.
• However, Q-GADMM significantly outperforms GADMM in terms of minimizing the total payload size.



Concluding remarks

• Compared to the original GADMM, Q-GADMM enjoys the same convergence rate, but 
at significantly lower communication overhead. 

• Numerical results in a convex linear regression task corroborate the advantages of Q-
GADMM over GADMM, GD, and QGD.

• Future work
• Q-GADMM over arbitrary and time varying topology.
• Non-convex and stochastic problems (e.g classification using DNN).

To know more about GADMM:

Elgabli, Anis, et al. "GADMM: Fast and communication efficient framework for distributed machine learning." arXiv
preprint arXiv:1909.00047 (2019).
Elgabli, Anis, et al. "L-FGADMM: Layer-Wise Federated Group ADMM for Communication Efficient Decentralized 
Deep Learning." arXiv preprint arXiv:1911.03654 (2019).



Questions

• For questions please do not hesitate to email me:

• Anis.elgabli@oulu.fi


