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Graph structured data

• Many types of data reside on a graph domain

• Nodes encode an entity

• Edges encode pairwise relationships between entities
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Graph Signal Processing

• We need efficient tools to analyse graph structured data

• Graph signal processing (GSP) generalises signal processing
tools, such as filtering, to graph structured data

• A graph signal is a mapping from nodes to a scalar value
x : V → R. It can be represented as a vector x ∈ Rn.

Noisy signal before filtering Filtered signal
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Motivation

• Topology can be noisy if estimated from data
• How much impact can this have on using graph filters to

analyse the data?

• Understanding of adversarial examples in the graph topology
• What characterises successful adversarial attacks?
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Research questions

• Are spectral graph filters robust to changes in the underlying
topology?

• Are spectral graph filters sensitive to certain perturbations of
fixed magnitude?
• If so, can we characterise the perturbations?
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Spectral graph theory

• Let G = (V, E ,W) be a simple graph

• The degree di of node i is the number of nodes adjacent to
node i

• Degree matrix D = diag(d1, . . . dn)

• Normalised Laplacian matrix L(G) = In −D−1/2WD1/2
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Spectral filtering

• Laplacian eigendecomposition L = UΛUT

• Λ = diag(λ0, . . . λn−1) where 0 = λ0 ≤ λ1 ≤ . . . ≤ λn−1 ≤ 2
are eigenvalues

• U is corresponding eigenvector matrix (graph Fourier basis)

• Graph Fourier transform x̂ = UTx

• Inverse graph Fourier transform x = Ux̂

• Filtering is given by

Udiag(g(λ1), . . . g(λn))UTx = Ug(Λ)UTx = g(L)x
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Are spectral graph filters robust to changes in the underlying
topology?
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Polynomial filters

• Our work focus on polynomial filters

gθ(L)x =
K∑

k=0

θk L̃kx, L̃ = L − In.

• Scaling is such that eigenvalues lie in [−1, 1].
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Polynomial filters are robust

• Consider a perturbation in the underlying topology giving
Laplacian matrix Lp and let the error be E = Lp − L
• Output distance is defined as

‖gθ(L)− gθ(Lp)‖

• For sufficiently small perturbations (‖E‖2 ≤ 1) Levie et al.1

proved that
‖gθ(L)− gθ(Lp)‖ ∈ O(‖E‖)

• For order K polynomial filters it holds that

‖gθ(L)− gθ(Lp)‖ ≤ 1

4
‖θ‖1 (K 2 − 1)

(
K + 1

K − 1

)K

‖E‖.

1R. Levie, E. Isufi, and G. Kutyniok. “On the Transferability of Spectral
Graph Filters”. In: arXiv:1901.10524 (2019).
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Output distance scales with ‖E‖2

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
p

0.2

0.4

0.6

0.8

g K
(

)
g K

(
p)

K
1
2
3



Introduction Background Robustness Fixed magnitude perturbations Conclusions and Future Directions

Are spectral graph filters sensitive to certain perturbations of fixed
magnitude?
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Edge deletion

• Consider removing a fixed number of edges from a graph,
what influences the magnitude of ‖E‖2?

• Entries of the Laplacian matrix depend on degree of end points

• A change in the Laplacian matrix may be due to multiple
edges if they are sufficiently close
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Edge deletion

The following empirically lead to larger values of ‖E‖2:

• Removing edges e = (u, v) with small values of dudv where
du, dv is the degree of the endpoints

• Removing edges which are pairwise close to each other
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Conclusions and Future Directions

• Change in the output of polynomial graph filters are bounded
linearly in ‖E‖2
• Structural properties such as degree distribution appear to

give insight into the magnitude of ‖E‖2
• Can we establish bounds on ‖E‖2 which depend on structural

properties?

• Some graph neural network architectures use spectral filters
for learning representations. Is the output of these graph
neural networks also sensitive to certain perturbations?
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