Introduction	Background	Robustness	Fixed magnitude perturbations	Conclusions and Future Directions
0000	00	0000		O

On the Stability of Polynomial Spectral Graph Filters

Henry Kenlay[†], Dorina Thanou[‡], Xiaowen Dong[†]

[†]University of Oxford [‡]Swiss Data Science Center

45th International Conference on Acoustics, Speech, and Signal Processing, 2020

- Many types of data reside on a graph domain
- Nodes encode an entity
- Edges encode pairwise relationships between entities

- We need efficient tools to analyse graph structured data
- Graph signal processing (GSP) generalises signal processing tools, such as filtering, to graph structured data
- A graph signal is a mapping from nodes to a scalar value x : V → ℝ. It can be represented as a vector x ∈ ℝⁿ.

Introduction	Background	Robustness	Fixed magnitude perturbations	Conclusions and Future Directions
0000	00	0000		O
Motivat	ion			

- Topology can be noisy if estimated from data
 - How much impact can this have on using graph filters to analyse the data?
- Understanding of adversarial examples in the graph topology

• What characterises successful adversarial attacks?

Introduction	Background	Robustness	Fixed magnitude perturbations	Conclusions and Future Directions
000●	00	0000		0
Researc	h questic	ons		

- Are spectral graph filters robust to changes in the underlying topology?
- Are spectral graph filters sensitive to certain perturbations of fixed magnitude?

• If so, can we characterise the perturbations?

Spectral	graph t	heory		
Introduction	Background	Robustness	Fixed magnitude perturbations	Conclusions and Future Directions
0000	●0	0000		0

- Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{W})$ be a simple graph
- The degree *d_i* of node *i* is the number of nodes adjacent to node *i*

- Degree matrix $\mathbf{D} = \operatorname{diag}(d_1, \ldots d_n)$
- Normalised Laplacian matrix $\mathcal{L}(\mathcal{G}) = \mathbf{I}_n \mathbf{D}^{-1/2} \mathbf{W} \mathbf{D}^{1/2}$

Spectral	filtering			
Introduction	Background	Robustness	Fixed magnitude perturbations	Conclusions and Future Directions
0000	0●	0000		0

- Laplacian eigendecomposition $\mathcal{L} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{T}$
 - $\Lambda = \text{diag}(\lambda_0, \dots, \lambda_{n-1})$ where $0 = \lambda_0 \le \lambda_1 \le \dots \le \lambda_{n-1} \le 2$ are eigenvalues
 - U is corresponding eigenvector matrix (graph Fourier basis)
- Graph Fourier transform $\hat{\mathbf{x}} = \mathbf{U}^T \mathbf{x}$
- Inverse graph Fourier transform $\mathbf{x} = \mathbf{U}\hat{\mathbf{x}}$
- Filtering is given by

$$\mathbf{U}\mathrm{diag}(g(\lambda_1),\ldots g(\lambda_n))\mathbf{U}^{\mathsf{T}}\mathbf{x} = \mathbf{U}g(\mathbf{\Lambda})\mathbf{U}^{\mathsf{T}}\mathbf{x} = g(\mathcal{L})\mathbf{x}$$

Introduction	Background	Robustness	Fixed magnitude perturbations	Conclusions and Future Directions
		•000		

Are spectral graph filters robust to changes in the underlying topology?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

0000	00	0€00	000	O
Polynor	mial filter	S		

• Our work focus on polynomial filters

$$g_{\theta}(\mathcal{L})\mathbf{x} = \sum_{k=0}^{K} \theta_k \tilde{\mathcal{L}}^k \mathbf{x}, \quad \tilde{\mathcal{L}} = \mathcal{L} - \mathbf{I}_n.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

• Scaling is such that eigenvalues lie in [-1, 1].

Introduction Background Robustness OOOO Fixed magnitude perturbations Conclusions and Future Directions OOO

Polynomial filters are robust

- Consider a perturbation in the underlying topology giving Laplacian matrix L_p and let the error be E = L_p - L
- Output distance is defined as

$$\|g_{ heta}(\mathcal{L}) - g_{ heta}(\mathcal{L}_p)\|$$

- For sufficiently small perturbations ($\|\mathbf{E}\|_2 \leq 1)$ Levie et al.^1 proved that

$$\|g_{ heta}(\mathcal{L}) - g_{ heta}(\mathcal{L}_p)\| \in \mathcal{O}(\|\mathsf{E}\|)$$

• For order K polynomial filters it holds that

$$\|g_{ heta}(\mathcal{L}) - g_{ heta}(\mathcal{L}_{p})\| \leq rac{1}{4} \| heta\|_1 (K^2 - 1) \left(rac{K+1}{K-1}
ight)^K \|\mathbf{E}\|.$$

¹R. Levie, E. Isufi, and G. Kutyniok. "On the Transferability of Spectral Graph Filters". In: *arXiv:1901.10524* (2019). (□ > (□

 Introduction
 Background
 Robustness
 Fixed magnitude perturbations
 Conclusions and Future Directions

 Output distance scales with ||E||_2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introduction	Background	Robustness	Fixed magnitude perturbations	Conclusions and Future Directions
			•00	

Are spectral graph filters sensitive to certain perturbations of fixed magnitude?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Background	Robustness	Fixed magnitude perturbations	Conclusions and Future Directions
0000	00	0000	0●0	0
Edge de	eletion			

- Consider removing a fixed number of edges from a graph, what influences the magnitude of ||E||₂?
 - Entries of the Laplacian matrix depend on degree of end points

• A change in the Laplacian matrix may be due to multiple edges if they are sufficiently close

Introduction	Background	Robustness	Fixed magnitude perturbations	Conclusions and Future Directions
0000	00	0000	00●	0
Edge de	letion			

The following empirically lead to larger values of $\|\mathbf{E}\|_2$:

- Removing edges e = (u, v) with small values of $d_u d_v$ where d_u, d_v is the degree of the endpoints
- Removing edges which are pairwise close to each other

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Change in the output of polynomial graph filters are bounded linearly in $\|\mathbf{E}\|_2$
- Structural properties such as degree distribution appear to give insight into the magnitude of ||E||₂
- Can we establish bounds on $\|\mathbf{E}\|_2$ which depend on structural properties?
- Some graph neural network architectures use spectral filters for learning representations. Is the output of these graph neural networks also sensitive to certain perturbations?