

The 45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP)

Acoustic Matching by Embedding Impulse Responses

Jiaqi Su^{1,2}, Zeyu Jin², Adam Finkelstein¹

¹Princeton University ²Adobe Research

Motivation

Audio recordings with varying acoustic properties:

- Variety of environment effects in natural space
- Variety of qualities due to devices & recording setups

I record this part in kitchen;

And then record the rest in living room.

Goal: Acoustically match one part to the other, so that they sound seamless together.

Acoustic Matching

Transform source recordings to sound as if recorded in target environment

Previous Work: Acoustic Modeling

Acoustic Parameter Estimation

The ACE challenge [Eaton 2016]: Blind estimation of DRR & RT60 from recorded speech

Simple approximation

Impulse Response Estimation

- Assume knowing emitting source statistics [Florencio 2015] or having multiple channels [Crocco 2015]
- Side-product of de-noising & de-reverb by NMD & NMF [Kagami 2018, Duan 2012]

Under-constrained problem

Impulse Response Generation

- The image method [Allen 1979]
- Scene-Aware audio for 360° Videos [Li 2018]

Performance Gap between synthetic IR and real IR

Previous Work: Equalization Matching

- Source-differentiated equalization matching [Germain 2016]
 Address mismatched coloration and background noise
- Approximate specific equalization targets [Ramirez 2018]
- Mapping between different microphones [Mathur 2019]

Matching all of reverberation, equalization and noise remains an open problem

Method: Overview

A generic one-shot acoustic matching method

Embedding Network E

Acoustic Matching Network M

Method: IR Embedding

Embedding Net

- 16-dim embedding to encode IR information of recordings
- Pre-trained with triplet loss
- Nearest Neighbor IR Search

Method: End-to-end Acoustic Matching

- A stack of two feedforward WaveNets with bottleneck in between
- Globally conditioned on IR embedding of an example target recording
- IR embedding co-trained with acoustic matching task
- Perceptually-motivated spectrogram loss in place of sample loss

Data

Synthetic Data (training & evaluation)

- Clean speech: Device and Produced Speech (DAPS) clean set [Mysore 2015]
- IR: MIT Impulse Response Survey Dataset [Traer 2016]
- Noise: the Reverb Challenge [Kinoshita 2013] and the ACE Challenge [Eaton 2016]
- Data augmentation on speech, IR and noise:
 - Speaker voices (speed, pitch & volume)
 - DRR and RT60 of reverb
 - EQ distortion
 - \circ $\,$ Noise coloration and SNR $\,$

Real Data (evaluation)

- Device and Produced Speech (DAPS) Dataset
 - Recordings of high-quality speech re-recorded under different rooms environments

Evaluations

- Amazon Mechanical Turk
- Conducted 3000 HITs with 12 rating questions each.
 - Audio clips created by stitching two consecutive utterances from two different environments and acoustically matching one to the other.
 - Subjects rate how seamless the audio clips sound on a scale from 1=very different to 5=seamless

Evaluations

- Two sets of environment pairs:
 - Clean to synthetic noise-free environment
 - Between real environments
- Method conditions:
 - NAIVE: No acoustic matching
 - **REF**: Ground truth
- Baselines O NMD: IR estimated via NMD [Baby 2016]
 - EQ-M: Source-differentiated EQ matching [Germain 2016]
 - **E2E**: Our end-to-end acoustic matching network
 - Ours O NN: Our NN IR retrieved from the pre-trained embedding
 - **NN-CO**: Our NN IR retrieved from the co-trained embedding

Evaluations: IR embedding

Takeaways:

- NN-based and E2E beat all the baselines
- NN-CO almost perfectly reproduces the desired acoustic effects

Evaluations: Acoustic Matching

Takeaways:

- E2E outperforms other approaches, being robust to noise
- EQ-M catches up when converting from noisy env to noisy env, due to noise masking

More audio examples

https://daps.cs.princeton.edu/projects/matching/

Conclusions

- An embedding space for acoustic impulse responses independent of speaker and speech content
- A generic one-shot waveform-to-waveform acoustic matching network based on the embedding.
- A simple and high-quality clean-to-environment matching solution based on nearest neighbor search in the embedding space.
- A human listening study on both real and synthetic data.

Thanks for watching!