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Introduction

Amyotrophic Lateral Sclerosis (ALS)

A progressive motor neuron disease

Affects nerve cells in the brain
and spinal cord

Results in loss of muscle control.

The ALS Association,”What is ALS?”, May 2019.
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Introduction

Symptoms of ALS

Muscle stiffness

A hard time in holding items

Muscle cramps

Swallowing problems

Speech difficulties (slurred or slowness)

Mayo Clinic, ’Amyotrophic Lateral Sclerosis - Symptoms and causes’, 6 August 2019
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Introduction

Parkinson’s Disease (PD)

A progressive brain disorder

Occurs when nerve cells in brain gets damaged

Reduces the DOPAMINE level in brain

Results in movement problems.

Parkinson’s Foundation, ”What is Parkinson’s? ”
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Introduction

Symptoms of PD

Tremors (hands, arms, legs)

Stiffness in limbs and trunk

Slowness in movements

Difficulty in swallowing and chewing

Speech difficulties (slurred or slowness)

Mayo Clinic, ’Parkinson’s disease - Symptoms and causes’, 30 June 2018
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Introduction

Life expectancy with ALS or PD

ALS affected people1

50% people - 3 or more years
20% people - 5 or more years
10% people - 10 or more years

PD affected people2

10 to 20 years after being diagnosed

1. The ALS Association,Facts you should know, May 2019.
2. Life expectancy in Parkinson disease Lawrence I. Golbe, Cristian E. Leyton

Neurology Nov 2018, 91 (22) 991-992.
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Introduction

Diagnosis for ALS and PD

Currently no specific tests that can confirm of having ALS or PD

Diagnosis is based on medical history (11 months) and a neurological
examination

The ALS Association,Symptoms and Diagnosis, May 2019.
SPIRE LAB, IISc, Bangalore 8



Introduction

Treatment for ALS and PD

Currently NO cure for ALS and PD

Early detection can help to prolong survival and quality of life

The ALS Association,Facts you should know, May 2019.
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Introduction

Motivation

Automated methods for detection of ALS or PD could reduce
diagnosis time

To develop a mobile application that helps in early detection and to
follow the progression of the disease using speech as a biomarker
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Introduction

Speech waveforms and spectograms of ALS, PD, and
Healthy controls

SPIRE LAB, IISc, Bangalore 11



Introduction

Literature Survey

From diadochokinetic rate, using syllable rate and maximum
phonation duration, automatic classification of ALS patients has been
attempted based on fractal analysis

Antje S Mefferd, “Speaking rate effects on articulatory pattern consistency in talkers
with mild ALS, ”Clinical linguistics & phonetics, vol. 28, no.11, pp. 799–811, 2014.
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Introduction

Literature Survey

Studied the performance of three different speech tasks namely,
Spontaneous speech (SPON), Diadochokinetic rate (DIDK), and
Sustained phoneme production (PHON) in automatic classification
between ALS and Healthy Control (HC) using SVM and DNN

Suhas B.N., “Comparison of Speech Tasks and Recording Devices for Voice Based
Automatic Classification of Healthy Subjects and Patients with Amyotrophic Lateral
Sclerosis,” inProc. Interspeech 2019, 2019, pp. 4564–4568.

SPIRE LAB, IISc, Bangalore 13



Introduction

Challenges

Data collection from ALS and PD patients is often tedious making a
large corpus development a challenging task

Automated methods require huge amount of data to train a classifier
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Introduction

Goal of this work

To study the performance of the classifier in low resource condition
and benefit of Transfer Learning in such scenarios

Also we are proposing CNN-LSTM approach and comparing with the
existing DNN and SVM approaches
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Proposed approach

CNN-LSTM
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Proposed approach

Transfer Learning

Machine learning approach where weights of a neural network model
trained for a particular task are utilized as the initialization of weights
for a model with a different task.

Useful during unavailability of large amounts of training data
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Proposed approach

CNN-LSTM using transfer learning
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Proposed approach

Objectives of the experiments

Comparing the performance of CNN-LSTM to ALS classification with
those of baseline schemes based on SVM and DNN.

Transfer learning approach for 2-class classifications
(ALS/HC;PD/HC) in low resource data condition

3-class classification(ALS/PD/HC) with CNN-LSTM
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Data

Data collection

Collected from National Institute of Mental Health and Neurosciences
(NIMHANS), Bengaluru, India.

Recorder : Zoom H-6 recorder with XYH-6 X/Y capsule high quality
unidirectional microphone.

Sampling frequency : 44.1 kHz

SPIRE LAB, IISc, Bangalore 22



Data

Dataset

Number of subjects used in this work:

60 ALS (30 Male, 30 Female)
60 PD (30 Male, 30 Female)
60 healthy control (HC) (30 Male, 30 Female)
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Dataset

Number of subjects used in this work:

60 ALS (30 Male, 30 Female)
60 PD (30 Male, 30 Female)
60 healthy control (HC) (30 Male, 30 Female)

Speech tasks:

Spontaneous speech (SPON) - 5.62 hours

SPIRE LAB, IISc, Bangalore 25



Data

Dataset
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Data

Dataset

Number of subjects used in this work:

60 ALS (30 Male, 30 Female)
60 PD (30 Male, 30 Female)
60 healthy control (HC) (30 Male, 30 Female)

Speech tasks:

Spontaneous speech (SPON) - 5.62 hours
Sustained phoneme production (PHON) - 5.79 hours
Diadochokinetic rate (DIDK) - 4.65 hours
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Experiments and Results

Experimental setup

5 fold cross validation (each fold consists of 12 ALS, 12 PD, 12 HC)

Proposed approach: CNN-LSTM

Features: Mel frequency cepstral coefficients (MFCC) with window
length (20ms) and shift (10ms).

Baseline: SVM and DNN for ALS/HC

Features: MFCC (suprasegmental features on 2sec analysis window)
Kernel function in SVM: Radial basis function
DNN: 2-hidden layers with 128 units in each layer and output layer
with two units and softmax activation.
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Experiments and Results

Objectives of the experiments

Comparing the performance of CNN-LSTM to ALS
classification with those of baseline schemes
based on SVM and DNN.

Transfer learning approach for 2-class classifications
(ALS/HC;PD/HC) in low resource data condition

3-class classification(ALS/PD/HC) with CNN-LSTM
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Experiments and Results

Comparison of CNN-LSTM with SVM and DNN for
ALS/HC classification task

ALS/HC SPON DIDK PHON

SVM 89.99(3.2) 94.52(4.3) 78.52(5.1)

DNN 92.44(3.1) 93.43(3.2) 78.80(4.3)

CNN-LSTM 96.96(2.8) 94.60(2.7) 89.20(1.5)

Table: Average (SD) accuracy of ALS/HC classification
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Experiments and Results

Transfer learning for ALS/HC and PD/HC with
CNN-LSTM:

Classification accuracy by varying percentage of training data.
• RI, • TL from PD/HC, • TL from ALS/HC.
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Experiments and Results

Objectives of the experiments

Comparing the performance of CNN-LSTM to ALS classification with
those of baseline schemes based on SVM and DNN.
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Experiments and Results

Three class classification ALS/PD/HC using CNN-LSTM

SPON DIDK PHON

3-class ALS/PD/HC 83.04(2.17) 85.24(4.25) 77.20(1.95)

2-class

ALS/HC 95.2(2.33) 87(2.36) 86.1(1.0)
PD/HC 90.7(3.94) 87(2.36) 74.1(5.67)

ALS/HC (FT) 98.22(1.87) 95.5(1.72) 89.28(1.10)
PD/HC (FT) 90.98(4.03) 84.62(5.69) 73.52(4.61)

Table: Average accuracy (SD) of ALS/PD/HC model and pair-wise accuracy’s of
ALS/HC and PD/HC.
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Conclusion

Key Takeaways

CNN-LSTM works better than SVM and DNN for ALS/HC

Transfer learning at low resource training data show that data from
ALS benefits PD/HC classification and vice-versa

Fine-tuning weights of 3-class (ALS/PD/HC) classifier for 2-class
classification (PD/HC or ALS/HC) gives an absolute improvement of
2% classification accuracy in SPON task over random initialization.
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Conclusion

Future work

To investigate CNN-LSTM and transfer learning techniques for
severity estimation of ALS and PD patients.

To examine the scientific rationale behind such benefits due to PD in
classification for ALS and vice-versa.
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THANK YOU

SPIRE LAB, IISc, Bangalore 41



Conclusion

Have Questions/Suggestions?
Write to us at spirelab.ee@iisc.ac.in
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