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➢ i-vector is the unsupervised state of the art in speaker recognition. 

➢ PLDA is the most efficient backend but requires speaker labels. 

➢ Cosine avoids speaker labels but degrades performance. 

➢ Propose unsupervised backend of i-vectors to avoid speaker labels and 
increase their discriminative power. 

➢ We transform i-vectors into a new speaker vectors, using a DNN trained 
with Nearest Neighbor i-vectors. 
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➢ There are three main Stages



Proposed System

5

➢ Stage 1

○ Selection of Nearest Neighbor i-vectors
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➢ Stage 2

○ DNN Training
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➢ Stage 3

○ Speaker Vector Extraction
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➢ Stage 1

○ Selection of Nearest Neighbor i-vectors
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➢ Unsupervised manner

➢ For every i-vector in background 
data, select k-nearest neighbor 
i-vectors, that are: 

○ Closest according to cosine 
score 

○ Pass a certain threshold Training i-vector

Potential Neighbor i-vectors
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➢ Stage 2

○ DNN Training
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➢ Inputs are the k-Nearest Neighbors 

➢ First layer performs Average 
Pooling operation

➢ FC1-FC3 perform ReLU operation, 
while FC4 performs linear function. 

➢ Minimize the loss function L(vˆ, w) 

➢ L(·) can be Cosine Distance (CD) or 
Mean Squared Error (MSE)
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➢ Stage 3

○ Speaker Vector Extraction
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➢ Select k-Nearest Neighbors for 
every test i-vector

➢ Input to the already trained DNN

➢ Extract Speaker vector at the 
output of the DNN

➢ Score experimental trials using 
cosine scoring technique
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➢ Background data is required in the testing phase
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➢ Experiments on VoxCeleb-1 database. 

➢ Train partition: 148642 utterances in total

➢ Test partition: 4874 utterances in total

➢ Nearest Neighbor and DNN training on Train partition (1211 speakers).

➢ Evaluation on Test partition (40 speakers, 37720 trials).

➢ UBM, T-matrix, and PLDA trained on VoxCeleb-1, Train partition.

➢ 20 MFCC + Deltas and 1024 components UBM were used to extract 
i-vectors. 
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EER(%) for the proposed vectors using both CD and MSE 
losses with different values of k. 

The EER(%) for i-vector/PLDA is equal to 9.54 

k CD Loss MSE Loss

10 8.81 8.70

20 6.60 6.56

30 5.68 5.54

50 4.97 4.98

100 4.84 4.45

150 6.53 4.48
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DET Curve for the proposed vectors using MSE loss with 
different values of k. 
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➢ Our proposed approach has obtained: 

○ 25% relative improvement over x-vectors. 

○ 53% relative improvement over i-vectors. 

➢ Main advantage: No speaker labels required. 

➢ Disadvantage: Background data is used in the testing phase. 

➢ The good results are obtained mainly due to the usage of nearest 
neighbors for the testing i-vectors.
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➢ We proposed a post processing for i-vectors, in order to increase their 
discriminative power. 

➢ We trained a DNN using nearest neighbor i-vectors. 

➢ The nearest neighbors were selected in unsupervised manner. 

➢ We transformed the test i-vectors into a new speaker vectors. 

➢ The results have shown that our proposed speaker vectors outperform 
the baseline systems. 

➢ Avoids speaker labels at the cost of using the background data in the 
testing part.
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